Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 123337 by aurpeyz last updated on 25/Nov/20

find the maximum and minimum  values of 2cos2x−cos4x in the range  0<x<π. sketch the curve

$${find}\:{the}\:{maximum}\:{and}\:{minimum} \\ $$ $${values}\:{of}\:\mathrm{2}{cos}\mathrm{2}{x}−{cos}\mathrm{4}{x}\:{in}\:{the}\:{range} \\ $$ $$\mathrm{0}<{x}<\pi.\:{sketch}\:{the}\:{curve} \\ $$

Commented bybemath last updated on 25/Nov/20

max = 1.5 ; min = −3   range ⇒ −3≤y≤1.5

$${max}\:=\:\mathrm{1}.\mathrm{5}\:;\:{min}\:=\:−\mathrm{3}\: \\ $$ $${range}\:\Rightarrow\:−\mathrm{3}\leqslant{y}\leqslant\mathrm{1}.\mathrm{5} \\ $$

Commented bybemath last updated on 25/Nov/20

Commented byaurpeyz last updated on 25/Nov/20

thanks

$${thanks} \\ $$

Commented byaurpeyz last updated on 25/Nov/20

pls explain how you got min=−3.   i tried so hard but couldnt

$${pls}\:{explain}\:{how}\:{you}\:{got}\:{min}=−\mathrm{3}.\: \\ $$ $${i}\:{tried}\:{so}\:{hard}\:{but}\:{couldnt} \\ $$

Commented bybemath last updated on 25/Nov/20

let ∅(x)=2cos 2x−cos 4x   ∅(x)=2cos 2x−(2cos^2 2x−1)  ∅(x)=−2cos^2 2x+2cos 2x+1  ∅(x) = −2(cos^2 2x−cos 2x)+1  ∅(x)=−2[(cos 2x−(1/2))^2 −(1/4)]+1  ∅(x)=−2(cos 2x−(1/2))^2 +(3/2)  → { ((max when cos 2x=(1/2))),((min when cos 2x=−1)) :}

$${let}\:\emptyset\left({x}\right)=\mathrm{2cos}\:\mathrm{2}{x}−\mathrm{cos}\:\mathrm{4}{x}\: \\ $$ $$\emptyset\left({x}\right)=\mathrm{2cos}\:\mathrm{2}{x}−\left(\mathrm{2cos}\:^{\mathrm{2}} \mathrm{2}{x}−\mathrm{1}\right) \\ $$ $$\emptyset\left({x}\right)=−\mathrm{2cos}\:^{\mathrm{2}} \mathrm{2}{x}+\mathrm{2cos}\:\mathrm{2}{x}+\mathrm{1} \\ $$ $$\emptyset\left({x}\right)\:=\:−\mathrm{2}\left(\mathrm{cos}\:^{\mathrm{2}} \mathrm{2}{x}−\mathrm{cos}\:\mathrm{2}{x}\right)+\mathrm{1} \\ $$ $$\emptyset\left({x}\right)=−\mathrm{2}\left[\left(\mathrm{cos}\:\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\right]+\mathrm{1} \\ $$ $$\emptyset\left({x}\right)=−\mathrm{2}\left(\mathrm{cos}\:\mathrm{2}{x}−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{2}} \\ $$ $$\rightarrow\begin{cases}{{max}\:{when}\:\mathrm{cos}\:\mathrm{2}{x}=\frac{\mathrm{1}}{\mathrm{2}}}\\{{min}\:{when}\:\mathrm{cos}\:\mathrm{2}{x}=−\mathrm{1}}\end{cases} \\ $$

Commented byMJS_new last updated on 25/Nov/20

cos 2x =−1+2cos^2  x  cos 4x =−1+2cos^2  2x =       =−1+2(−1+2cos^2  x)^2 =       =1−8cos^2  x +8cos^4  x  ⇒2cos 2x −cos 4x =       =−3+12cos^2  x −8cos^4  x =f(x)  we can always use  t=tan (x/2) ⇔ x=2arctan t  ⇒ sin x =((2t)/(t^2 +1))∧cos x =−((t^2 −1)/(t^2 +1))  ⇒ −3+12cos^2  x −8cos^4  x =  =((t^8 +20t^6 −90t^4 +20t^2 +1)/((t^2 +1)^4 ))=g(t)  (dg/dt)=0  −32((t(t^6 −15t^4 +15t^2 −1))/((t^2 +1)^5 ))=0  t(t^6 −15t^4 +15t^2 −1)=0  t_1 =0  t^6 −15t^4 +15t^2 −1=0  trying factors of −1 ⇒ t_(2, 3) =±1  t^4 −14t^2 +1=0  ⇒ t^2 =7±4(√3)  ⇒ t=±(√(7±4(√3)))=±(2±(√3))  now we have  t∈{−2−(√3), −1, −2+(√3), 0, 2−(√3), 1, 2+(√3)}  now t=tan (x/2) ⇒ x=2nπ+2arctan t  for 0<x<π we get  (x=0∨x=π ⇒ f(x)=1)  x=(π/6) ⇒ f(x)=(3/2)  x=(π/2) ⇒ f(x)=−3  x=((5π)/6) ⇒ f(x)=(3/2)  ⇒ minimum is −3 and maximum is (3/2)

$$\mathrm{cos}\:\mathrm{2}{x}\:=−\mathrm{1}+\mathrm{2cos}^{\mathrm{2}} \:{x} \\ $$ $$\mathrm{cos}\:\mathrm{4}{x}\:=−\mathrm{1}+\mathrm{2cos}^{\mathrm{2}} \:\mathrm{2}{x}\:= \\ $$ $$\:\:\:\:\:=−\mathrm{1}+\mathrm{2}\left(−\mathrm{1}+\mathrm{2cos}^{\mathrm{2}} \:{x}\right)^{\mathrm{2}} = \\ $$ $$\:\:\:\:\:=\mathrm{1}−\mathrm{8cos}^{\mathrm{2}} \:{x}\:+\mathrm{8cos}^{\mathrm{4}} \:{x} \\ $$ $$\Rightarrow\mathrm{2cos}\:\mathrm{2}{x}\:−\mathrm{cos}\:\mathrm{4}{x}\:= \\ $$ $$\:\:\:\:\:=−\mathrm{3}+\mathrm{12cos}^{\mathrm{2}} \:{x}\:−\mathrm{8cos}^{\mathrm{4}} \:{x}\:={f}\left({x}\right) \\ $$ $$\mathrm{we}\:\mathrm{can}\:\mathrm{always}\:\mathrm{use} \\ $$ $${t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:\Leftrightarrow\:{x}=\mathrm{2arctan}\:{t} \\ $$ $$\Rightarrow\:\mathrm{sin}\:{x}\:=\frac{\mathrm{2}{t}}{{t}^{\mathrm{2}} +\mathrm{1}}\wedge\mathrm{cos}\:{x}\:=−\frac{{t}^{\mathrm{2}} −\mathrm{1}}{{t}^{\mathrm{2}} +\mathrm{1}} \\ $$ $$\Rightarrow\:−\mathrm{3}+\mathrm{12cos}^{\mathrm{2}} \:{x}\:−\mathrm{8cos}^{\mathrm{4}} \:{x}\:= \\ $$ $$=\frac{{t}^{\mathrm{8}} +\mathrm{20}{t}^{\mathrm{6}} −\mathrm{90}{t}^{\mathrm{4}} +\mathrm{20}{t}^{\mathrm{2}} +\mathrm{1}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{4}} }={g}\left({t}\right) \\ $$ $$\frac{{dg}}{{dt}}=\mathrm{0} \\ $$ $$−\mathrm{32}\frac{{t}\left({t}^{\mathrm{6}} −\mathrm{15}{t}^{\mathrm{4}} +\mathrm{15}{t}^{\mathrm{2}} −\mathrm{1}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{5}} }=\mathrm{0} \\ $$ $${t}\left({t}^{\mathrm{6}} −\mathrm{15}{t}^{\mathrm{4}} +\mathrm{15}{t}^{\mathrm{2}} −\mathrm{1}\right)=\mathrm{0} \\ $$ $${t}_{\mathrm{1}} =\mathrm{0} \\ $$ $${t}^{\mathrm{6}} −\mathrm{15}{t}^{\mathrm{4}} +\mathrm{15}{t}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$ $$\mathrm{trying}\:\mathrm{factors}\:\mathrm{of}\:−\mathrm{1}\:\Rightarrow\:{t}_{\mathrm{2},\:\mathrm{3}} =\pm\mathrm{1} \\ $$ $${t}^{\mathrm{4}} −\mathrm{14}{t}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$ $$\Rightarrow\:{t}^{\mathrm{2}} =\mathrm{7}\pm\mathrm{4}\sqrt{\mathrm{3}} \\ $$ $$\Rightarrow\:{t}=\pm\sqrt{\mathrm{7}\pm\mathrm{4}\sqrt{\mathrm{3}}}=\pm\left(\mathrm{2}\pm\sqrt{\mathrm{3}}\right) \\ $$ $$\mathrm{now}\:\mathrm{we}\:\mathrm{have} \\ $$ $${t}\in\left\{−\mathrm{2}−\sqrt{\mathrm{3}},\:−\mathrm{1},\:−\mathrm{2}+\sqrt{\mathrm{3}},\:\mathrm{0},\:\mathrm{2}−\sqrt{\mathrm{3}},\:\mathrm{1},\:\mathrm{2}+\sqrt{\mathrm{3}}\right\} \\ $$ $$\mathrm{now}\:{t}=\mathrm{tan}\:\frac{{x}}{\mathrm{2}}\:\Rightarrow\:{x}=\mathrm{2}{n}\pi+\mathrm{2arctan}\:{t} \\ $$ $$\mathrm{for}\:\mathrm{0}<{x}<\pi\:\mathrm{we}\:\mathrm{get} \\ $$ $$\left({x}=\mathrm{0}\vee{x}=\pi\:\Rightarrow\:{f}\left({x}\right)=\mathrm{1}\right) \\ $$ $${x}=\frac{\pi}{\mathrm{6}}\:\Rightarrow\:{f}\left({x}\right)=\frac{\mathrm{3}}{\mathrm{2}} \\ $$ $${x}=\frac{\pi}{\mathrm{2}}\:\Rightarrow\:{f}\left({x}\right)=−\mathrm{3} \\ $$ $${x}=\frac{\mathrm{5}\pi}{\mathrm{6}}\:\Rightarrow\:{f}\left({x}\right)=\frac{\mathrm{3}}{\mathrm{2}} \\ $$ $$\Rightarrow\:\mathrm{minimum}\:\mathrm{is}\:−\mathrm{3}\:\mathrm{and}\:\mathrm{maximum}\:\mathrm{is}\:\frac{\mathrm{3}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com