Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 123407 by bemath last updated on 25/Nov/20

Find the all asymtotes of the  curve y = ((5x^2 +2x−1)/(x−2))

$${Find}\:{the}\:{all}\:{asymtotes}\:{of}\:{the} \\ $$$${curve}\:{y}\:=\:\frac{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}{{x}−\mathrm{2}} \\ $$

Commented by EVIMENEBASSEY last updated on 25/Nov/20

    Find the all asymtotes of the  curve y = ((5x^2 +2x−1)/(x−2))  solution  y(x−2)=5x^2 +2x−1  horizontal asymtote =2  no horizontal asymtote.  but letting y=mx+c  (mx+c)(x−2)=5x^2 +2x−1  mx^2 −mx+xc−2c=5x^2 +2x−1  c=m=0    caddet

$$ \\ $$$$ \\ $$$${Find}\:{the}\:{all}\:{asymtotes}\:{of}\:{the} \\ $$$${curve}\:{y}\:=\:\frac{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}{{x}−\mathrm{2}} \\ $$$$\mathrm{solution} \\ $$$$\mathrm{y}\left(\mathrm{x}−\mathrm{2}\right)=\mathrm{5x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{1} \\ $$$$\mathrm{horizontal}\:\mathrm{asymtote}\:=\mathrm{2} \\ $$$$\mathrm{no}\:\mathrm{horizontal}\:\mathrm{asymtote}. \\ $$$$\mathrm{but}\:\mathrm{letting}\:\mathrm{y}=\mathrm{mx}+\mathrm{c} \\ $$$$\left(\mathrm{mx}+\mathrm{c}\right)\left(\mathrm{x}−\mathrm{2}\right)=\mathrm{5x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{1} \\ $$$$\mathrm{mx}^{\mathrm{2}} −\mathrm{mx}+\mathrm{xc}−\mathrm{2c}=\mathrm{5x}^{\mathrm{2}} +\mathrm{2x}−\mathrm{1} \\ $$$$\mathrm{c}=\mathrm{m}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{caddet} \\ $$

Commented by liberty last updated on 25/Nov/20

(i) vertical asymtotes : lim_(x→2)  y = lim_(x→2)  ((5x^2 +2x−1)/(x−2)) = ∞   we get vertical asymtotes x=2  (ii) horizontal asymtotes : lim_(x→±∞) y =lim_(x→±∞) ((5x^2 +2x−1)/(x−2))  clearly the limit does not exist so  the curve no horizontal asymtotes  (iii) we want find inclined asymtotes  y = kx + b where  { ((k=lim_(x→∞) (y/x)=lim_(x→∞) ((5x^2 +2x−1)/(x^2 −2x))=5)),((b=lim_(x→∞) (y−kx)=lim_(x→∞) (((5x^2 +2x−1)/(x−2))−5x))) :}   ⇒b = lim_(x→∞) (((5x^2 +2x−1−5x^2 +10x)/(x−2)))  ⇒b = lim_(x→∞) (((12x−1)/(x−2)))=12  thus straight line y = 5x+12 is  inclined asymtotes

$$\left({i}\right)\:{vertical}\:{asymtotes}\::\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:{y}\:=\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}{{x}−\mathrm{2}}\:=\:\infty \\ $$$$\:{we}\:{get}\:{vertical}\:{asymtotes}\:{x}=\mathrm{2} \\ $$$$\left({ii}\right)\:{horizontal}\:{asymtotes}\::\:\underset{{x}\rightarrow\pm\infty} {\mathrm{lim}}{y}\:=\underset{{x}\rightarrow\pm\infty} {\mathrm{lim}}\frac{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}{{x}−\mathrm{2}} \\ $$$${clearly}\:{the}\:{limit}\:{does}\:{not}\:{exist}\:{so} \\ $$$${the}\:{curve}\:{no}\:{horizontal}\:{asymtotes} \\ $$$$\left({iii}\right)\:{we}\:{want}\:{find}\:{inclined}\:{asymtotes} \\ $$$${y}\:=\:{kx}\:+\:{b}\:{where}\:\begin{cases}{{k}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{{y}}{{x}}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{2}{x}}=\mathrm{5}}\\{{b}=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left({y}−{kx}\right)=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}}{{x}−\mathrm{2}}−\mathrm{5}{x}\right)}\end{cases} \\ $$$$\:\Rightarrow{b}\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{5}{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}−\mathrm{5}{x}^{\mathrm{2}} +\mathrm{10}{x}}{{x}−\mathrm{2}}\right) \\ $$$$\Rightarrow{b}\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{12}{x}−\mathrm{1}}{{x}−\mathrm{2}}\right)=\mathrm{12} \\ $$$${thus}\:{straight}\:{line}\:{y}\:=\:\mathrm{5}{x}+\mathrm{12}\:{is} \\ $$$${inclined}\:{asymtotes} \\ $$

Commented by MJS_new last updated on 25/Nov/20

y=((p(x))/(q(x))) with p, q are polynomes and degree (p) ≥degree (q)  you can always find existing asymptotic lines  or curves by dividing the fraction  y=((7x+3)/(x−5))=7+((38)/(x−5)) ⇒ asymptotes  { ((x=5)),((y=7)) :}  y=((7x^2 +3)/(x−5))=7x+35+((178)/(x−5)) ⇒ asymptotes  { ((x=5)),((y=7x+35)) :}  y=((7x^3 +3)/(x^2 −5))=7x+((35x+3)/(x^2 −5)) ⇒ asymptotes  { ((x=±(√5))),((y=7x)) :}  asymptotic curves:  y=((7x^3 +3)/(x−5))=7x^2 +35x+175+((878)/(x−5)) ⇒ asymptotes  { ((x=5)),((y=7x^2 +35x+175)) :}  y=((7x^4 +3)/(x^2 −5))=7x^2 +35+((178)/(x^2 −5)) ⇒ asymptotes  { ((x=±(√5))),((y=7x^2 +35)) :}  ...

$${y}=\frac{{p}\left({x}\right)}{{q}\left({x}\right)}\:\mathrm{with}\:{p},\:{q}\:\mathrm{are}\:\mathrm{polynomes}\:\mathrm{and}\:\mathrm{degree}\:\left({p}\right)\:\geqslant\mathrm{degree}\:\left({q}\right) \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{always}\:\mathrm{find}\:\mathrm{existing}\:\mathrm{asymptotic}\:\mathrm{lines} \\ $$$$\mathrm{or}\:\mathrm{curves}\:\mathrm{by}\:\mathrm{dividing}\:\mathrm{the}\:\mathrm{fraction} \\ $$$${y}=\frac{\mathrm{7}{x}+\mathrm{3}}{{x}−\mathrm{5}}=\mathrm{7}+\frac{\mathrm{38}}{{x}−\mathrm{5}}\:\Rightarrow\:\mathrm{asymptotes}\:\begin{cases}{{x}=\mathrm{5}}\\{{y}=\mathrm{7}}\end{cases} \\ $$$${y}=\frac{\mathrm{7}{x}^{\mathrm{2}} +\mathrm{3}}{{x}−\mathrm{5}}=\mathrm{7}{x}+\mathrm{35}+\frac{\mathrm{178}}{{x}−\mathrm{5}}\:\Rightarrow\:\mathrm{asymptotes}\:\begin{cases}{{x}=\mathrm{5}}\\{{y}=\mathrm{7}{x}+\mathrm{35}}\end{cases} \\ $$$${y}=\frac{\mathrm{7}{x}^{\mathrm{3}} +\mathrm{3}}{{x}^{\mathrm{2}} −\mathrm{5}}=\mathrm{7}{x}+\frac{\mathrm{35}{x}+\mathrm{3}}{{x}^{\mathrm{2}} −\mathrm{5}}\:\Rightarrow\:\mathrm{asymptotes}\:\begin{cases}{{x}=\pm\sqrt{\mathrm{5}}}\\{{y}=\mathrm{7}{x}}\end{cases} \\ $$$$\mathrm{asymptotic}\:\mathrm{curves}: \\ $$$${y}=\frac{\mathrm{7}{x}^{\mathrm{3}} +\mathrm{3}}{{x}−\mathrm{5}}=\mathrm{7}{x}^{\mathrm{2}} +\mathrm{35}{x}+\mathrm{175}+\frac{\mathrm{878}}{{x}−\mathrm{5}}\:\Rightarrow\:\mathrm{asymptotes}\:\begin{cases}{{x}=\mathrm{5}}\\{{y}=\mathrm{7}{x}^{\mathrm{2}} +\mathrm{35}{x}+\mathrm{175}}\end{cases} \\ $$$${y}=\frac{\mathrm{7}{x}^{\mathrm{4}} +\mathrm{3}}{{x}^{\mathrm{2}} −\mathrm{5}}=\mathrm{7}{x}^{\mathrm{2}} +\mathrm{35}+\frac{\mathrm{178}}{{x}^{\mathrm{2}} −\mathrm{5}}\:\Rightarrow\:\mathrm{asymptotes}\:\begin{cases}{{x}=\pm\sqrt{\mathrm{5}}}\\{{y}=\mathrm{7}{x}^{\mathrm{2}} +\mathrm{35}}\end{cases} \\ $$$$... \\ $$

Commented by bemath last updated on 25/Nov/20

Commented by bemath last updated on 25/Nov/20

Commented by MJS_new last updated on 25/Nov/20

for y=((7x^4 +3)/(x^2 −5)) and y=7x^2 +35 you will have to  set up a different window. try  −4≤x≤4 and −100≤y≤300

$$\mathrm{for}\:{y}=\frac{\mathrm{7}{x}^{\mathrm{4}} +\mathrm{3}}{{x}^{\mathrm{2}} −\mathrm{5}}\:\mathrm{and}\:{y}=\mathrm{7}{x}^{\mathrm{2}} +\mathrm{35}\:\mathrm{you}\:\mathrm{will}\:\mathrm{have}\:\mathrm{to} \\ $$$$\mathrm{set}\:\mathrm{up}\:\mathrm{a}\:\mathrm{different}\:\mathrm{window}.\:\mathrm{try} \\ $$$$−\mathrm{4}\leqslant{x}\leqslant\mathrm{4}\:\mathrm{and}\:−\mathrm{100}\leqslant{y}\leqslant\mathrm{300} \\ $$

Commented by bemath last updated on 25/Nov/20

yes sir.

$${yes}\:{sir}.\: \\ $$

Answered by MJS_new last updated on 25/Nov/20

vertical asymptote x=2  y=5x+12+((23)/(x−2)) ⇒ asymptote y=5x+12

$$\mathrm{vertical}\:\mathrm{asymptote}\:{x}=\mathrm{2} \\ $$$${y}=\mathrm{5}{x}+\mathrm{12}+\frac{\mathrm{23}}{{x}−\mathrm{2}}\:\Rightarrow\:\mathrm{asymptote}\:{y}=\mathrm{5}{x}+\mathrm{12} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com