Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 123409 by Snail last updated on 25/Nov/20

x^4 +12x−5=0   show that the sum of two roots  of the equation is 2

$${x}^{\mathrm{4}} +\mathrm{12}{x}−\mathrm{5}=\mathrm{0}\:\:\:{show}\:{that}\:{the}\:{sum}\:{of}\:{two}\:{roots} \\ $$$${of}\:{the}\:{equation}\:{is}\:\mathrm{2} \\ $$

Answered by MJS_new last updated on 25/Nov/20

x^4 +12x−5=(x^2 −2x+5)(x^2 +2x−1)    (x−a)(x−b)(x−α)(x−β)=  =(x^2 −(a+b)x+ab)(x^2 −(α+β)x+αβ)  (x^2 −(a+b)x+ab)=(x^2 −2x+5) ⇒ a+b=2  (x^2 −(α+β)x+αβ)=(x^2 +2x−1) ⇒ α+β=−2

$${x}^{\mathrm{4}} +\mathrm{12}{x}−\mathrm{5}=\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{5}\right)\left({x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}\right) \\ $$$$ \\ $$$$\left({x}−{a}\right)\left({x}−{b}\right)\left({x}−\alpha\right)\left({x}−\beta\right)= \\ $$$$=\left({x}^{\mathrm{2}} −\left({a}+{b}\right){x}+{ab}\right)\left({x}^{\mathrm{2}} −\left(\alpha+\beta\right){x}+\alpha\beta\right) \\ $$$$\left({x}^{\mathrm{2}} −\left({a}+{b}\right){x}+{ab}\right)=\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{5}\right)\:\Rightarrow\:{a}+{b}=\mathrm{2} \\ $$$$\left({x}^{\mathrm{2}} −\left(\alpha+\beta\right){x}+\alpha\beta\right)=\left({x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}\right)\:\Rightarrow\:\alpha+\beta=−\mathrm{2} \\ $$

Commented by MJS_new last updated on 25/Nov/20

the method sometimes gives exact and “nice”  solutions for  ax^4 +bx^3 +cx^2 +dx+e=0  (1) divide by a  x^4 +(b/a)x^3 +(c/a)x^2 +(d/a)x+(e/a)=0  and rename variables  x^4 +hx^3 +jx^2 +kx+l=0  (2) let x=y−(h/4)  y^4 −((3h^2 −8j)/8)y^2 +((h^3 −4hj+8k)/8)y+((h^2 j−4hk+26l)/(16))=0  rename again  y^4 +py^2 +qy+r=0  now try to find 2 square factors  y^4 +py^2 +qy+r=(y^2 −αy−β)(y^2 +αy−γ)  ⇔   { ((p=−α^2 −β−γ)),((q=−α(β−γ))),((r=βγ)) :}  now solve the 1^(st)  for γ and the 2^(nd)  for β  and insert both into the 3^(rd)   ⇒   { ((γ=−(α^2 /2)−(p/2)+(q/(2α)))),((β=−(α^2 /2)−(p/2)+(q/(2α)))),((r=(α^4 /4)+((pα^2 )/2)+(p^2 /4)−(q^2 /(4α^2 ))=0)) :}  transform the 3^(rd)   α^6 +2pα^4 +(p^2 −4r)α^2 −q^2 =0  let α=(√t)  t^3 +2pt^2 +(p^2 −4r)t−q^2 =0  let t=z−((2p)/3)  z^3 −((p^2 +12r)/3)z−((2p^3 +72pr+27q^2 )/(27))=0  if this has at least one “nice” solution ∈R,  that′s fine; if not, better solve approximately  remember we must go back to α=(√(z−((2p)/3)))  so z being not a simple number will make  things worse

$$\mathrm{the}\:\mathrm{method}\:\mathrm{sometimes}\:\mathrm{gives}\:\mathrm{exact}\:\mathrm{and}\:``\mathrm{nice}'' \\ $$$$\mathrm{solutions}\:\mathrm{for} \\ $$$${ax}^{\mathrm{4}} +{bx}^{\mathrm{3}} +{cx}^{\mathrm{2}} +{dx}+{e}=\mathrm{0} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{divide}\:\mathrm{by}\:{a} \\ $$$${x}^{\mathrm{4}} +\frac{{b}}{{a}}{x}^{\mathrm{3}} +\frac{{c}}{{a}}{x}^{\mathrm{2}} +\frac{{d}}{{a}}{x}+\frac{{e}}{{a}}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{rename}\:\mathrm{variables} \\ $$$${x}^{\mathrm{4}} +{hx}^{\mathrm{3}} +{jx}^{\mathrm{2}} +{kx}+{l}=\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{let}\:{x}={y}−\frac{{h}}{\mathrm{4}} \\ $$$${y}^{\mathrm{4}} −\frac{\mathrm{3}{h}^{\mathrm{2}} −\mathrm{8}{j}}{\mathrm{8}}{y}^{\mathrm{2}} +\frac{{h}^{\mathrm{3}} −\mathrm{4}{hj}+\mathrm{8}{k}}{\mathrm{8}}{y}+\frac{{h}^{\mathrm{2}} {j}−\mathrm{4}{hk}+\mathrm{26}{l}}{\mathrm{16}}=\mathrm{0} \\ $$$$\mathrm{rename}\:\mathrm{again} \\ $$$${y}^{\mathrm{4}} +{py}^{\mathrm{2}} +{qy}+{r}=\mathrm{0} \\ $$$$\mathrm{now}\:\mathrm{try}\:\mathrm{to}\:\mathrm{find}\:\mathrm{2}\:\mathrm{square}\:\mathrm{factors} \\ $$$${y}^{\mathrm{4}} +{py}^{\mathrm{2}} +{qy}+{r}=\left({y}^{\mathrm{2}} −\alpha{y}−\beta\right)\left({y}^{\mathrm{2}} +\alpha{y}−\gamma\right) \\ $$$$\Leftrightarrow \\ $$$$\begin{cases}{{p}=−\alpha^{\mathrm{2}} −\beta−\gamma}\\{{q}=−\alpha\left(\beta−\gamma\right)}\\{{r}=\beta\gamma}\end{cases} \\ $$$$\mathrm{now}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{for}\:\gamma\:\mathrm{and}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{for}\:\beta \\ $$$$\mathrm{and}\:\mathrm{insert}\:\mathrm{both}\:\mathrm{into}\:\mathrm{the}\:\mathrm{3}^{\mathrm{rd}} \\ $$$$\Rightarrow \\ $$$$\begin{cases}{\gamma=−\frac{\alpha^{\mathrm{2}} }{\mathrm{2}}−\frac{{p}}{\mathrm{2}}+\frac{{q}}{\mathrm{2}\alpha}}\\{\beta=−\frac{\alpha^{\mathrm{2}} }{\mathrm{2}}−\frac{{p}}{\mathrm{2}}+\frac{{q}}{\mathrm{2}\alpha}}\\{{r}=\frac{\alpha^{\mathrm{4}} }{\mathrm{4}}+\frac{{p}\alpha^{\mathrm{2}} }{\mathrm{2}}+\frac{{p}^{\mathrm{2}} }{\mathrm{4}}−\frac{{q}^{\mathrm{2}} }{\mathrm{4}\alpha^{\mathrm{2}} }=\mathrm{0}}\end{cases} \\ $$$$\mathrm{transform}\:\mathrm{the}\:\mathrm{3}^{\mathrm{rd}} \\ $$$$\alpha^{\mathrm{6}} +\mathrm{2}{p}\alpha^{\mathrm{4}} +\left({p}^{\mathrm{2}} −\mathrm{4}{r}\right)\alpha^{\mathrm{2}} −{q}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{let}\:\alpha=\sqrt{{t}} \\ $$$${t}^{\mathrm{3}} +\mathrm{2}{pt}^{\mathrm{2}} +\left({p}^{\mathrm{2}} −\mathrm{4}{r}\right){t}−{q}^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{let}\:{t}={z}−\frac{\mathrm{2}{p}}{\mathrm{3}} \\ $$$${z}^{\mathrm{3}} −\frac{{p}^{\mathrm{2}} +\mathrm{12}{r}}{\mathrm{3}}{z}−\frac{\mathrm{2}{p}^{\mathrm{3}} +\mathrm{72}{pr}+\mathrm{27}{q}^{\mathrm{2}} }{\mathrm{27}}=\mathrm{0} \\ $$$$\mathrm{if}\:\mathrm{this}\:\mathrm{has}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:``\mathrm{nice}''\:\mathrm{solution}\:\in\mathbb{R}, \\ $$$$\mathrm{that}'\mathrm{s}\:\mathrm{fine};\:\mathrm{if}\:\mathrm{not},\:\mathrm{better}\:\mathrm{solve}\:\mathrm{approximately} \\ $$$$\mathrm{remember}\:\mathrm{we}\:\mathrm{must}\:\mathrm{go}\:\mathrm{back}\:\mathrm{to}\:\alpha=\sqrt{{z}−\frac{\mathrm{2}{p}}{\mathrm{3}}} \\ $$$$\mathrm{so}\:{z}\:\mathrm{being}\:{not}\:\mathrm{a}\:\mathrm{simple}\:\mathrm{number}\:\mathrm{will}\:\mathrm{make} \\ $$$$\mathrm{things}\:\mathrm{worse} \\ $$

Commented by Snail last updated on 25/Nov/20

  How do u know that the biquadratic will be   factorized in (x^2 −2x+5)(x^2 +2x−1)...

$$ \\ $$$${How}\:{do}\:{u}\:{know}\:{that}\:{the}\:{biquadratic}\:{will}\:{be}\: \\ $$$${factorized}\:{in}\:\left({x}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{5}\right)\left({x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{1}\right)... \\ $$

Commented by MJS_new last updated on 25/Nov/20

I will post the method. just give me a little  time

$$\mathrm{I}\:\mathrm{will}\:\mathrm{post}\:\mathrm{the}\:\mathrm{method}.\:\mathrm{just}\:\mathrm{give}\:\mathrm{me}\:\mathrm{a}\:\mathrm{little} \\ $$$$\mathrm{time} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com