Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123552 by Lordose last updated on 26/Nov/20

∫_( 0) ^( (π/4)) tan^n (x)dx

0π4tann(x)dx

Answered by Adeleke last updated on 26/Nov/20

Answered by TANMAY PANACEA last updated on 26/Nov/20

I_n =∫_0 ^(π/4) tan^(n−2) x(sec^2 x−1)dx  =∫_0 ^(π/4) tan^(n−2) x×d(tanx)−I_(n−2)   =∣((tan^(n−1) x)/(n−1))∣_0 ^(π/4) −I_(n−2)   =(1/(n−1))−I_(n−2)   I_n =(1/(n−1))−I_(n−2)

In=0π4tann2x(sec2x1)dx=0π4tann2x×d(tanx)In2=∣tann1xn10π4In2=1n1In2In=1n1In2

Commented by peter frank last updated on 26/Nov/20

thank you

thankyou

Answered by Dwaipayan Shikari last updated on 26/Nov/20

If it was∫_0 ^(π/2) tan^n x dx  then we can get a closed form  ∫_0 ^(π/2) sin^n x cos^(−n) x dx  =(1/2)∫_0 ^1 t^((n/2)−(1/2)) (1−t)^(((−n)/2)−(1/2)) dt                sin^2 x=t  =(1/2) ((Γ((n/2)+(1/2))Γ((1/2)−(n/2)))/(Γ(1)))=(π/(2sin(((nπ)/2)+(π/2))))  ∫_0 ^(π/4) tan^p x dx =∫_0 ^1 (t^p /(t^2 +1))dt                  =∫_0 ^1 t^p Σ_(n=0) ^∞ (−1)^n t^(2n) =Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 t^(2n+p) dt=Σ_(n=0) ^∞ (−1)^n (1/(2n+p+1))

Ifitwas0π2tannxdxthenwecangetaclosedform0π2sinnxcosnxdx=1201tn212(1t)n212dtsin2x=t=12Γ(n2+12)Γ(12n2)Γ(1)=π2sin(nπ2+π2)0π4tanpxdx=01tpt2+1dt=01tpn=0(1)nt2n=n=0(1)n01t2n+pdt=n=0(1)n12n+p+1

Answered by mnjuly1970 last updated on 26/Nov/20

Ω=^(tan(x)=y) ∫_0 ^( 1) ((y^n dy)/(1+y^2 ))=∫_0 ^( 1)  ((y^n −y^(n+2) )/(1−y^4 ))dy    =(1/4)∫_0 ^( 1)  ((t^((n−3)/4)  −t^((n−1)/4) )/(1−t))dt   =(1/4)(H_((n−1)/4) −H_((n−3)/4) )   =(1/4)(ψ((n/4)+(3/4))−ψ((n/4)+(1/4))) ✓

Ω=tan(x)=y01yndy1+y2=01ynyn+21y4dy=1401tn34tn141tdt=14(Hn14Hn34)=14(ψ(n4+34)ψ(n4+14))

Commented by Dwaipayan Shikari last updated on 26/Nov/20

∫_0 ^(π/4) tan^4 x dx=(1/4)(ψ(1+(3/4))−ψ(1+(1/4)))                            =(1/4)(ψ((3/4))+(4/3)−ψ((1/4))−4)                           = (1/4)(πcot((π/4))−(8/3))=(π/4)−(2/3)

0π4tan4xdx=14(ψ(1+34)ψ(1+14))=14(ψ(34)+43ψ(14)4)=14(πcot(π4)83)=π423

Commented by Lordose last updated on 02/Dec/20

Exactly

Exactly

Terms of Service

Privacy Policy

Contact: info@tinkutara.com