Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123676 by mathmax by abdo last updated on 27/Nov/20

find ∫_0 ^∞  e^(−x) ln(1+e^(2x) )dx

$$\mathrm{find}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{\mathrm{2x}} \right)\mathrm{dx} \\ $$

Answered by mnjuly1970 last updated on 27/Nov/20

solution     Ω=∫_0 ^( ∞) e^(−x) ln[e^(2x) (1+e^(−2x) )]dx     =2∫_0 ^( ∞) xe^(−x) dx+∫_0 ^( ∞) e^(−x) ln(1+e^(−2x) )dx  =2Γ(2)+∫_0 ^( ∞) e^(−x) Σ_(n=1 ) ^∞ (((−1)^(n−1) e^(−2nx) )/n)dx  =2+Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^( ∞) e^(−x(2n+1)) dx  =2+Σ_(n=1) ^∞ (((−1)^n )/n)[(e^(−x(2n+1)) /(2n+1))]_0 ^∞   =2+Σ_(n=1 ) ^∞ (((−1)^(n−1) )/(n(2n+1)))=2−[Σ_(n=1 ) ^∞ (((−1)^n )/n)−((2(−1)^n )/(2n+1))]   =2+ln(2)+2[−1+(π/4)]    ln(2)+(π/2) ≈2.26

$${solution} \\ $$$$\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} {e}^{−{x}} {ln}\left[{e}^{\mathrm{2}{x}} \left(\mathrm{1}+{e}^{−\mathrm{2}{x}} \right)\right]{dx} \\ $$$$\:\:\:=\mathrm{2}\int_{\mathrm{0}} ^{\:\infty} {xe}^{−{x}} {dx}+\int_{\mathrm{0}} ^{\:\infty} {e}^{−{x}} {ln}\left(\mathrm{1}+{e}^{−\mathrm{2}{x}} \right){dx} \\ $$$$=\mathrm{2}\Gamma\left(\mathrm{2}\right)+\int_{\mathrm{0}} ^{\:\infty} {e}^{−{x}} \underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {e}^{−\mathrm{2}{nx}} }{{n}}{dx} \\ $$$$=\mathrm{2}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}}\int_{\mathrm{0}} ^{\:\infty} {e}^{−{x}\left(\mathrm{2}{n}+\mathrm{1}\right)} {dx} \\ $$$$=\mathrm{2}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\left[\frac{{e}^{−{x}\left(\mathrm{2}{n}+\mathrm{1}\right)} }{\mathrm{2}{n}+\mathrm{1}}\right]_{\mathrm{0}} ^{\infty} \\ $$$$=\mathrm{2}+\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} }{{n}\left(\mathrm{2}{n}+\mathrm{1}\right)}=\mathrm{2}−\left[\underset{{n}=\mathrm{1}\:} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}−\frac{\mathrm{2}\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}+\mathrm{1}}\right] \\ $$$$\:=\mathrm{2}+{ln}\left(\mathrm{2}\right)+\mathrm{2}\left[−\mathrm{1}+\frac{\pi}{\mathrm{4}}\right] \\ $$$$\:\:{ln}\left(\mathrm{2}\right)+\frac{\pi}{\mathrm{2}}\:\approx\mathrm{2}.\mathrm{26} \\ $$

Commented by mnjuly1970 last updated on 27/Nov/20

Commented by harckinwunmy last updated on 27/Nov/20

can i know the name og   this app. thanks

$$\mathrm{can}\:\mathrm{i}\:\mathrm{know}\:\mathrm{the}\:\mathrm{name}\:\mathrm{og}\: \\ $$$$\mathrm{this}\:\mathrm{app}.\:\mathrm{thanks} \\ $$

Commented by Dwaipayan Shikari last updated on 27/Nov/20

Wolfram alpha

$${Wolfram}\:{alpha} \\ $$

Commented by Dwaipayan Shikari last updated on 27/Nov/20

https://wolframalpha.com/

Commented by mnjuly1970 last updated on 27/Nov/20

 thank you mr payan

$$\:{thank}\:{you}\:{mr}\:{payan} \\ $$

Commented by Dwaipayan Shikari last updated on 27/Nov/20

��

Commented by mathmax by abdo last updated on 28/Nov/20

thank you sir mn...

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}\:\mathrm{mn}... \\ $$

Answered by mathmax by abdo last updated on 28/Nov/20

I=∫_0 ^∞  e^(−x) ln(1+e^(2x) )dx  changement e^x  =t give  I =∫_1 ^∞  t^(−1) ln(1+t^2 )(dt/t) =∫_1 ^∞  ((ln(1+t^2 ))/t^2 )dt   =_(bypsrts)    [−(1/t)ln(1+t^2 )]_1 ^∞ +∫_1 ^∞ (1/t)×((2t)/(1+t^2 ))dt  =ln(2) +2∫_1 ^∞  (dt/(1+t^2 )) =ln(2)+2[arctant]_1 ^∞   =ln(2)+2{(π/2)−(π/4)} =ln(2)+2((π/4)) =(π/2) +ln(2)

$$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \:\mathrm{e}^{−\mathrm{x}} \mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{\mathrm{2x}} \right)\mathrm{dx}\:\:\mathrm{changement}\:\mathrm{e}^{\mathrm{x}} \:=\mathrm{t}\:\mathrm{give} \\ $$$$\mathrm{I}\:=\int_{\mathrm{1}} ^{\infty} \:\mathrm{t}^{−\mathrm{1}} \mathrm{ln}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\frac{\mathrm{dt}}{\mathrm{t}}\:=\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)}{\mathrm{t}^{\mathrm{2}} }\mathrm{dt}\: \\ $$$$=_{\mathrm{bypsrts}} \:\:\:\left[−\frac{\mathrm{1}}{\mathrm{t}}\mathrm{ln}\left(\mathrm{1}+\mathrm{t}^{\mathrm{2}} \right)\right]_{\mathrm{1}} ^{\infty} +\int_{\mathrm{1}} ^{\infty} \frac{\mathrm{1}}{\mathrm{t}}×\frac{\mathrm{2t}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt} \\ $$$$=\mathrm{ln}\left(\mathrm{2}\right)\:+\mathrm{2}\int_{\mathrm{1}} ^{\infty} \:\frac{\mathrm{dt}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\:=\mathrm{ln}\left(\mathrm{2}\right)+\mathrm{2}\left[\mathrm{arctant}\right]_{\mathrm{1}} ^{\infty} \\ $$$$=\mathrm{ln}\left(\mathrm{2}\right)+\mathrm{2}\left\{\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}\right\}\:=\mathrm{ln}\left(\mathrm{2}\right)+\mathrm{2}\left(\frac{\pi}{\mathrm{4}}\right)\:=\frac{\pi}{\mathrm{2}}\:+\mathrm{ln}\left(\mathrm{2}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com