Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 123715 by Engr_Jidda last updated on 27/Nov/20

Answered by Dwaipayan Shikari last updated on 27/Nov/20

∫_(−∞) ^∞ (e^(2x) /(e^(3x) +1))dx  =2∫_0 ^∞ Σ_(n=1) ^∞ (−1)^(n+1) e^(2x) e^(−3nx) dx  =2Σ_(n=1) ^∞ (−1)^(n+1) ∫_0 ^∞ e^(−x(3n−2)) dx       x(3n−2)=u  =2Σ_(n=1) ^∞ (−1)^(n+1) (1/((3n−2)))∫_0 ^∞ e^(−u) du  =2Σ_(n=1) ^∞ (((−1)^(n+1) )/(3n−2))Γ(1)  =2Σ_(n=1) ^∞ (((−1)^(n+1) )/(3n−2))=2Σ_(n=0) ^∞ (((−1)^n )/(3n+1))=2Σ_(n=0) ^∞ (−1)^n ∫_0 ^1 x^(3n)   =2∫_0 ^1 Σ_(n=0) ^∞ (−1)^n x^(3n)   =2∫_0 ^1 (1/(1+x^3 ))dx  =2∫_0 ^1 (1/(3(1+x)))+((−(x/3)+(2/3))/(1−x+x^2 ))dx      =−(1/3)∫_0 ^1 ((2x−1)/(x^2 −x+1))+∫(1/(x^2 −x+1))dx  =−(1/3)[log(x^2 −x+1)]_0 ^1 +∫(1/((x−(1/2))^2 +(((√3)/2))^2 ))dx  =[(2/( (√3)))tan^(−1) ((2x−1)/( (√3)))]_0 ^1   =((2π)/( 3(√3)))

e2xe3x+1dx=20n=1(1)n+1e2xe3nxdx=2n=1(1)n+10ex(3n2)dxx(3n2)=u=2n=1(1)n+11(3n2)0eudu=2n=1(1)n+13n2Γ(1)=2n=1(1)n+13n2=2n=0(1)n3n+1=2n=0(1)n01x3n=201n=0(1)nx3n=20111+x3dx=20113(1+x)+x3+231x+x2dx=13012x1x2x+1+1x2x+1dx=13[log(x2x+1)]01+1(x12)2+(32)2dx=[23tan12x13]01=2π33

Answered by mathmax by abdo last updated on 28/Nov/20

A=∫_(−∞) ^(+∞)   (e^(2x) /(e^(3x)  +1))dx =∫_(−∞) ^0  (e^(2x) /(e^(3x)  +1))dx(→x=−t) +∫_0 ^∞  (e^(2x) /(e^(3x) +1))dx  =∫_0 ^∞   (e^(−2t) /(e^(−3t)  +1))dt  +∫_0 ^∞   (e^(2x) /(e^(3x)  +1))dx  we have  ∫_0 ^∞   (e^(−2x) /(e^(−3x)  +1))dx = ∫_0 ^∞  e^(−2x) Σ_(n=0) ^∞  (−1)^n  e^(−3nx) dx  =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^∞  e^(−(3n+2)x)  dx =_((3n+2)x=u) Σ_(n=0) ^∞ (−1)^n  ∫_0 ^∞ e^(−u) (du/(3n+2))  =Σ_(n=0) ^∞  (((−1)^n )/(3n+2))  ∫_0 ^∞   (e^(2x) /(e^(3x)  +1))dx =∫_0 ^∞   (e^(−x) /(1+e^(−3x) ))dx =∫_0 ^∞  e^(−x) Σ_(n=0) ^∞ (−1)^n  e^(−3nx)   =Σ_(n=0) ^∞  (−1)^n  ∫_0 ^∞  e^(−(3n+1)x) dx =_((3n+1)x=u) Σ_(n=0) ^∞ (−1)^n  ∫_0 ^∞   e^(−u) (du/(3n+1))  =Σ_(n=0) ^∞  (((−1)^n )/(3n+1)) ⇒A =Σ_(n0) ^∞  (((−1)^n )/(3n+2)) +Σ_(n=0) ^∞  (((−1)^n )/(3n+1))  rest calculus those series...be continued...

A=+e2xe3x+1dx=0e2xe3x+1dx(x=t)+0e2xe3x+1dx=0e2te3t+1dt+0e2xe3x+1dxwehave0e2xe3x+1dx=0e2xn=0(1)ne3nxdx=n=0(1)n0e(3n+2)xdx=(3n+2)x=un=0(1)n0eudu3n+2=n=0(1)n3n+20e2xe3x+1dx=0ex1+e3xdx=0exn=0(1)ne3nx=n=0(1)n0e(3n+1)xdx=(3n+1)x=un=0(1)n0eudu3n+1=n=0(1)n3n+1A=n0(1)n3n+2+n=0(1)n3n+1restcalculusthoseseries...becontinued...

Commented by Engr_Jidda last updated on 30/Nov/20

thanks i′m waiting sir

thanksimwaitingsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com