Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 123720 by mnjuly1970 last updated on 27/Nov/20

          ... nice   calulus...     evaluate ::         Φ=  ∫_0 ^(  ∞) ((x^3 e^((−x)/2) )/(sinh((x/2)))) =???

$$\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:\:{calulus}... \\ $$$$\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\Phi=\:\:\int_{\mathrm{0}} ^{\:\:\infty} \frac{{x}^{\mathrm{3}} {e}^{\frac{−{x}}{\mathrm{2}}} }{{sinh}\left(\frac{{x}}{\mathrm{2}}\right)}\:=??? \\ $$

Answered by Dwaipayan Shikari last updated on 27/Nov/20

2∫_0 ^∞ ((x^3 e^(−(x/2)) )/(e^(x/2) −e^(−(x/2)) ))dx  =2∫_0 ^∞ (x^3 /(e^x −1))dx  =2Σ_(n=1) ^∞ ∫_0 ^∞ x^3 e^(−nx) =2Σ_(n=1) ^∞ (1/n^4 )∫_0 ^∞ u^3 e^(−u) du       nx=u  =2Γ(4)Σ_(n=1) ^∞ (1/n^4 )=((2π^4 )/(15))

$$\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{3}} {e}^{−\frac{{x}}{\mathrm{2}}} }{{e}^{\frac{{x}}{\mathrm{2}}} −{e}^{−\frac{{x}}{\mathrm{2}}} }{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{3}} }{{e}^{{x}} −\mathrm{1}}{dx} \\ $$$$=\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\infty} {x}^{\mathrm{3}} {e}^{−{nx}} =\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\int_{\mathrm{0}} ^{\infty} {u}^{\mathrm{3}} {e}^{−{u}} {du}\:\:\:\:\:\:\:{nx}={u} \\ $$$$=\mathrm{2}\Gamma\left(\mathrm{4}\right)\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{4}} }=\frac{\mathrm{2}\pi^{\mathrm{4}} }{\mathrm{15}} \\ $$

Commented by mnjuly1970 last updated on 27/Nov/20

thank you mr Dwaipayan...

$${thank}\:{you}\:{mr}\:{Dwaipayan}... \\ $$

Commented by Dwaipayan Shikari last updated on 27/Nov/20

�� ����☃️

Answered by mathmax by abdo last updated on 28/Nov/20

Φ =∫_0 ^∞   ((x^3  e^(−(x/2)) )/(sh((x/2))))dx changement (x/2)=t give  Φ=∫_0 ^∞ ((8t^3  e^(−t) )/(sh(t)))(2)dt =32 ∫_0 ^∞   ((t^3  e^(−t) )/(e^t −e^(−t) ))dt  =32 ∫_0 ^∞   ((t^3 e^(−2t) )/(1−e^(−2t) ))dt =32 ∫_0 ^∞  t^3  e^(−2t) Σ_(n=0) ^∞ e^(−2nt)  dt  =32 Σ_(n=0) ^∞  ∫_0 ^∞  t^3  e^(−2(n+1)t) dt  =_(2(n+1)t=z)   32Σ_(n=0) ^∞ ∫_0 ^∞ (z^3 /(8(n+1)^3 ))e^(−z) (dz/(2(n+1)))  =2 Σ_(n=0) ^∞  (1/((n+1)^4 )) ∫_0 ^∞  z^(3 ) e^(−z) dz =2Γ(4)Σ_(n=1) ^∞  (1/n^4 )  =2Γ(4)ξ(4) =2.3!(π^4 /(90)) =((12π^4 )/(90)) =((6.2π^4 )/(6.15)) ⇒Φ=((2π^4 )/(15))

$$\Phi\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{x}^{\mathrm{3}} \:\mathrm{e}^{−\frac{\mathrm{x}}{\mathrm{2}}} }{\mathrm{sh}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)}\mathrm{dx}\:\mathrm{changement}\:\frac{\mathrm{x}}{\mathrm{2}}=\mathrm{t}\:\mathrm{give} \\ $$$$\Phi=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{8t}^{\mathrm{3}} \:\mathrm{e}^{−\mathrm{t}} }{\mathrm{sh}\left(\mathrm{t}\right)}\left(\mathrm{2}\right)\mathrm{dt}\:=\mathrm{32}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{t}^{\mathrm{3}} \:\mathrm{e}^{−\mathrm{t}} }{\mathrm{e}^{\mathrm{t}} −\mathrm{e}^{−\mathrm{t}} }\mathrm{dt} \\ $$$$=\mathrm{32}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{t}^{\mathrm{3}} \mathrm{e}^{−\mathrm{2t}} }{\mathrm{1}−\mathrm{e}^{−\mathrm{2t}} }\mathrm{dt}\:=\mathrm{32}\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{3}} \:\mathrm{e}^{−\mathrm{2t}} \sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \mathrm{e}^{−\mathrm{2nt}} \:\mathrm{dt} \\ $$$$=\mathrm{32}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{\mathrm{3}} \:\mathrm{e}^{−\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)\mathrm{t}} \mathrm{dt}\:\:=_{\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)\mathrm{t}=\mathrm{z}} \:\:\mathrm{32}\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \int_{\mathrm{0}} ^{\infty} \frac{\mathrm{z}^{\mathrm{3}} }{\mathrm{8}\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{3}} }\mathrm{e}^{−\mathrm{z}} \frac{\mathrm{dz}}{\mathrm{2}\left(\mathrm{n}+\mathrm{1}\right)} \\ $$$$=\mathrm{2}\:\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{n}+\mathrm{1}\right)^{\mathrm{4}} }\:\int_{\mathrm{0}} ^{\infty} \:\mathrm{z}^{\mathrm{3}\:} \mathrm{e}^{−\mathrm{z}} \mathrm{dz}\:=\mathrm{2}\Gamma\left(\mathrm{4}\right)\sum_{\mathrm{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{4}} } \\ $$$$=\mathrm{2}\Gamma\left(\mathrm{4}\right)\xi\left(\mathrm{4}\right)\:=\mathrm{2}.\mathrm{3}!\frac{\pi^{\mathrm{4}} }{\mathrm{90}}\:=\frac{\mathrm{12}\pi^{\mathrm{4}} }{\mathrm{90}}\:=\frac{\mathrm{6}.\mathrm{2}\pi^{\mathrm{4}} }{\mathrm{6}.\mathrm{15}}\:\Rightarrow\Phi=\frac{\mathrm{2}\pi^{\mathrm{4}} }{\mathrm{15}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com