Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 123738 by ajfour last updated on 27/Nov/20

Commented by ajfour last updated on 27/Nov/20

Find minimum of   (R/s) .  s is the side of the pink shaded  equilateral triangle.

$${Find}\:{minimum}\:{of}\:\:\:\frac{{R}}{{s}}\:. \\ $$$${s}\:{is}\:{the}\:{side}\:{of}\:{the}\:{pink}\:{shaded} \\ $$$${equilateral}\:{triangle}. \\ $$

Answered by mr W last updated on 28/Nov/20

Commented by mr W last updated on 28/Nov/20

AD=((2R sin α)/(sin (α+β)))  ∠ABD=α+(π/3)  AB=((2R sin α sin (α+β+(π/3)))/(sin (α+β)×sin (α+(π/3))))  s=((2R sin α sin β)/(sin (α+β)×sin (α+(π/3))))  ⇒λ=(s/(2R))=((sin α sin β)/(sin (α+β)×sin (α+(π/3))))   ...(II)  AE=2R cos β  ED=2R[cos β−((sin α)/(sin (α+β)))]  EB=((2R)/(sin (π/3)))[cos β−((sin α)/(sin (α+β)))]sin (α+β+(π/3))  ⇒((EB)/(2R))=(2/( (√3)))[cos β−((sin α)/(sin (α+β)))]sin (α+β+(π/3))  EB^2 =[((2R sin α sin (α+β+(π/3)))/(sin (α+β)×sin (α+(π/3))))]^2 +[2R cos β]^2 −2×((2R sin α sin (α+β+(π/3)))/(sin (α+β)×sin (α+(π/3))))×2R cos β×cos β  (((EB)/(2R)))^2 =[((sin α sin (α+β+(π/3)))/(sin (α+β)×sin (α+(π/3))))]^2 +cos^2  β−((2 sin α cos^2  β sin (α+β+(π/3)))/(sin (α+β)×sin (α+(π/3))))  ⇒[((sin α sin (α+β+(π/3)))/(sin (α+(π/3)) sin (α+β)))]^2 +cos^2  β−((2 sin α cos^2  β sin (α+β+(π/3)))/(sin (α+(π/3)) sin (α+β)))       =(4/( 3))[cos β sin (α+β)−sin α]^2 [((sin (α+β+(π/3)))/(sin (α+β)))]^2    ...(I)    we get from (II) and (I) graphically  λ_(max) =(s_(max) /(2R))≈0.1831  at α≈16.5° and β≈24°

$${AD}=\frac{\mathrm{2}{R}\:\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\alpha+\beta\right)} \\ $$$$\angle{ABD}=\alpha+\frac{\pi}{\mathrm{3}} \\ $$$${AB}=\frac{\mathrm{2}{R}\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\left(\alpha+\beta+\frac{\pi}{\mathrm{3}}\right)}{\mathrm{sin}\:\left(\alpha+\beta\right)×\mathrm{sin}\:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)} \\ $$$${s}=\frac{\mathrm{2}{R}\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta}{\mathrm{sin}\:\left(\alpha+\beta\right)×\mathrm{sin}\:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)} \\ $$$$\Rightarrow\lambda=\frac{{s}}{\mathrm{2}{R}}=\frac{\mathrm{sin}\:\alpha\:\mathrm{sin}\:\beta}{\mathrm{sin}\:\left(\alpha+\beta\right)×\mathrm{sin}\:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)}\:\:\:...\left({II}\right) \\ $$$${AE}=\mathrm{2}{R}\:\mathrm{cos}\:\beta \\ $$$${ED}=\mathrm{2}{R}\left[\mathrm{cos}\:\beta−\frac{\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\alpha+\beta\right)}\right] \\ $$$${EB}=\frac{\mathrm{2}{R}}{\mathrm{sin}\:\frac{\pi}{\mathrm{3}}}\left[\mathrm{cos}\:\beta−\frac{\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\alpha+\beta\right)}\right]\mathrm{sin}\:\left(\alpha+\beta+\frac{\pi}{\mathrm{3}}\right) \\ $$$$\Rightarrow\frac{{EB}}{\mathrm{2}{R}}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{3}}}\left[\mathrm{cos}\:\beta−\frac{\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\alpha+\beta\right)}\right]\mathrm{sin}\:\left(\alpha+\beta+\frac{\pi}{\mathrm{3}}\right) \\ $$$${EB}^{\mathrm{2}} =\left[\frac{\mathrm{2}{R}\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\left(\alpha+\beta+\frac{\pi}{\mathrm{3}}\right)}{\mathrm{sin}\:\left(\alpha+\beta\right)×\mathrm{sin}\:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)}\right]^{\mathrm{2}} +\left[\mathrm{2}{R}\:\mathrm{cos}\:\beta\right]^{\mathrm{2}} −\mathrm{2}×\frac{\mathrm{2}{R}\:\mathrm{sin}\:\alpha\:\mathrm{sin}\:\left(\alpha+\beta+\frac{\pi}{\mathrm{3}}\right)}{\mathrm{sin}\:\left(\alpha+\beta\right)×\mathrm{sin}\:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)}×\mathrm{2}{R}\:\mathrm{cos}\:\beta×\mathrm{cos}\:\beta \\ $$$$\left(\frac{{EB}}{\mathrm{2}{R}}\right)^{\mathrm{2}} =\left[\frac{\mathrm{sin}\:\alpha\:\mathrm{sin}\:\left(\alpha+\beta+\frac{\pi}{\mathrm{3}}\right)}{\mathrm{sin}\:\left(\alpha+\beta\right)×\mathrm{sin}\:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)}\right]^{\mathrm{2}} +\mathrm{cos}^{\mathrm{2}} \:\beta−\frac{\mathrm{2}\:\mathrm{sin}\:\alpha\:\mathrm{cos}^{\mathrm{2}} \:\beta\:\mathrm{sin}\:\left(\alpha+\beta+\frac{\pi}{\mathrm{3}}\right)}{\mathrm{sin}\:\left(\alpha+\beta\right)×\mathrm{sin}\:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)} \\ $$$$\Rightarrow\left[\frac{\mathrm{sin}\:\alpha\:\mathrm{sin}\:\left(\alpha+\beta+\frac{\pi}{\mathrm{3}}\right)}{\mathrm{sin}\:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)\:\mathrm{sin}\:\left(\alpha+\beta\right)}\right]^{\mathrm{2}} +\mathrm{cos}^{\mathrm{2}} \:\beta−\frac{\mathrm{2}\:\mathrm{sin}\:\alpha\:\mathrm{cos}^{\mathrm{2}} \:\beta\:\mathrm{sin}\:\left(\alpha+\beta+\frac{\pi}{\mathrm{3}}\right)}{\mathrm{sin}\:\left(\alpha+\frac{\pi}{\mathrm{3}}\right)\:\mathrm{sin}\:\left(\alpha+\beta\right)} \\ $$$$\:\:\:\:\:=\frac{\mathrm{4}}{\:\mathrm{3}}\left[\mathrm{cos}\:\beta\:\mathrm{sin}\:\left(\alpha+\beta\right)−\mathrm{sin}\:\alpha\right]^{\mathrm{2}} \left[\frac{\mathrm{sin}\:\left(\alpha+\beta+\frac{\pi}{\mathrm{3}}\right)}{\mathrm{sin}\:\left(\alpha+\beta\right)}\right]^{\mathrm{2}} \:\:\:...\left({I}\right) \\ $$$$ \\ $$$${we}\:{get}\:{from}\:\left({II}\right)\:{and}\:\left({I}\right)\:{graphically} \\ $$$$\lambda_{{max}} =\frac{{s}_{{max}} }{\mathrm{2}{R}}\approx\mathrm{0}.\mathrm{1831} \\ $$$${at}\:\alpha\approx\mathrm{16}.\mathrm{5}°\:{and}\:\beta\approx\mathrm{24}° \\ $$

Commented by mr W last updated on 28/Nov/20

Commented by ajfour last updated on 30/Nov/20

Thanks for solving!  Marvellously done.

$${Thanks}\:{for}\:{solving}! \\ $$$${Marvellously}\:{done}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com