Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123745 by mnjuly1970 last updated on 27/Nov/20

              ...advanced   calculus...    evaluation  of:               Ω=∫_0 ^( (π/2)) sin(x)log(sin(x))dx      by using the euler beta and gamma function:          β(p,(1/2))=2∫_0 ^(π/2) sin^(2p−1) (x)dx     ((dβ(p,(1/2)))/dp) =2∫_0 ^(π/2) 2sin^(2p−1) (x)ln(sin(x))dx  =4∫_0 ^(π/2) sin^(2p−1) (x)ln(sin(x))dx  Ω=(1/4)[((dβ(p,(1/2)))/dp)]_(p=1)    ((d(β(p,(1/2))))/dp)=(√π)[((Γ′(p)Γ(p+(1/2))−Γ′(p+(1/2))Γ(p))/(Γ^2 (p+(1/2))))]_(p=1)    Ω=(1/4)((√π)[((Γ^′ (1)Γ((3/2))−Γ′((3/2))Γ(1))/(Γ^2 ((3/2))))])  =((√π)/4)[((−γ(((√π)/2))−((√π)/2)(2−γ−2ln(2)))/(π/4))]  =((√π)/4)∗((√π)/2)(((−γ−2+γ+2ln(2))/(π/4)))  =ln(2)−1           ... m.n.july.1970...

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:\:{calculus}... \\ $$$$\:\:{evaluation}\:\:{of}: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}\left({x}\right){log}\left({sin}\left({x}\right)\right){dx} \\ $$$$\:\:\:\:{by}\:{using}\:{the}\:{euler}\:{beta}\:{and}\:{gamma}\:{function}: \\ $$$$\:\:\:\:\:\:\:\:\beta\left({p},\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{p}−\mathrm{1}} \left({x}\right){dx} \\ $$$$\:\:\:\frac{{d}\beta\left({p},\frac{\mathrm{1}}{\mathrm{2}}\right)}{{dp}}\:=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{2}{sin}^{\mathrm{2}{p}−\mathrm{1}} \left({x}\right){ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{p}−\mathrm{1}} \left({x}\right){ln}\left({sin}\left({x}\right)\right){dx} \\ $$$$\Omega=\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{{d}\beta\left({p},\frac{\mathrm{1}}{\mathrm{2}}\right)}{{dp}}\right]_{{p}=\mathrm{1}} \\ $$$$\:\frac{{d}\left(\beta\left({p},\frac{\mathrm{1}}{\mathrm{2}}\right)\right)}{{dp}}=\sqrt{\pi}\left[\frac{\Gamma'\left({p}\right)\Gamma\left({p}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\Gamma'\left({p}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left({p}\right)}{\Gamma^{\mathrm{2}} \left({p}+\frac{\mathrm{1}}{\mathrm{2}}\right)}\right]_{{p}=\mathrm{1}} \\ $$$$\:\Omega=\frac{\mathrm{1}}{\mathrm{4}}\left(\sqrt{\pi}\left[\frac{\Gamma^{'} \left(\mathrm{1}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)−\Gamma'\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\Gamma\left(\mathrm{1}\right)}{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{3}}{\mathrm{2}}\right)}\right]\right) \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{4}}\left[\frac{−\gamma\left(\frac{\sqrt{\pi}}{\mathrm{2}}\right)−\frac{\sqrt{\pi}}{\mathrm{2}}\left(\mathrm{2}−\gamma−\mathrm{2}{ln}\left(\mathrm{2}\right)\right)}{\frac{\pi}{\mathrm{4}}}\right] \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{4}}\ast\frac{\sqrt{\pi}}{\mathrm{2}}\left(\frac{−\gamma−\mathrm{2}+\gamma+\mathrm{2}{ln}\left(\mathrm{2}\right)}{\frac{\pi}{\mathrm{4}}}\right) \\ $$$$={ln}\left(\mathrm{2}\right)−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\:...\:{m}.{n}.{july}.\mathrm{1970}... \\ $$$$\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com