Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 123752 by liberty last updated on 27/Nov/20

Let f(x) be differentiable function  and g(x) be the inverse of f(x).  when lim_(x→2)  (((f(x)−x^3 )/(x^2 −4)))=(1/2) then ((dg(x))/dx)∣_(x=8)  =?

$${Let}\:{f}\left({x}\right)\:{be}\:{differentiable}\:{function} \\ $$$${and}\:{g}\left({x}\right)\:{be}\:{the}\:{inverse}\:{of}\:{f}\left({x}\right). \\ $$$${when}\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\left(\frac{{f}\left({x}\right)−{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} −\mathrm{4}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:{then}\:\frac{{dg}\left({x}\right)}{{dx}}\mid_{{x}=\mathrm{8}} \:=? \\ $$

Commented by benjo_mathlover last updated on 28/Nov/20

Answered by ajfour last updated on 27/Nov/20

say  f(x)−x^3 =2(x−2)  ⇒   f(x)=x^3 +2x−4           x=g^3 +2g−4  for  x=8     g^3 +2g−12=0      ⇒ g=2      1=3g^2 ((dg/dX))+2((dg/dx))  ⇒  ((dg/dx))∣_(x=8)  = (1/(3g^2 +2)) = (1/(14)) .

$${say}\:\:{f}\left({x}\right)−{x}^{\mathrm{3}} =\mathrm{2}\left({x}−\mathrm{2}\right) \\ $$$$\Rightarrow\:\:\:{f}\left({x}\right)={x}^{\mathrm{3}} +\mathrm{2}{x}−\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:{x}={g}^{\mathrm{3}} +\mathrm{2}{g}−\mathrm{4} \\ $$$${for}\:\:{x}=\mathrm{8}\:\:\:\:\:{g}^{\mathrm{3}} +\mathrm{2}{g}−\mathrm{12}=\mathrm{0} \\ $$$$\:\:\:\:\Rightarrow\:{g}=\mathrm{2} \\ $$$$\:\:\:\:\mathrm{1}=\mathrm{3}{g}^{\mathrm{2}} \left(\frac{{dg}}{{dX}}\right)+\mathrm{2}\left(\frac{{dg}}{{dx}}\right) \\ $$$$\Rightarrow\:\:\left(\frac{{dg}}{{dx}}\right)\mid_{{x}=\mathrm{8}} \:=\:\frac{\mathrm{1}}{\mathrm{3}{g}^{\mathrm{2}} +\mathrm{2}}\:=\:\frac{\mathrm{1}}{\mathrm{14}}\:. \\ $$$$ \\ $$

Answered by bobhans last updated on 27/Nov/20

g(x)=f^(−1) (x) then g ′(x) = (f^(−1) )′(x)  from the limit we get f(2)=8   or f^(−1) (8) = 2   we know that g′(8)=(1/(f ′(f^(−1) (8))))...(•)    consider lim_(x→2)  ((f(x)−x^3 )/(x^2 −4))=(1/2)  lim_(x→2) ((f ′(x)−3x^2 )/(2x))=(1/2)  ⇔ f ′(2)−12=2 ; f ′(2)=14  substitute into (•) we get  g′(8)=(1/(f ′(f^(−1) (8))))=(1/(f ′(2))) = (1/(14)).

$${g}\left({x}\right)={f}^{−\mathrm{1}} \left({x}\right)\:{then}\:{g}\:'\left({x}\right)\:=\:\left({f}^{−\mathrm{1}} \right)'\left({x}\right) \\ $$$${from}\:{the}\:{limit}\:{we}\:{get}\:{f}\left(\mathrm{2}\right)=\mathrm{8}\: \\ $$$${or}\:{f}^{−\mathrm{1}} \left(\mathrm{8}\right)\:=\:\mathrm{2}\: \\ $$$${we}\:{know}\:{that}\:{g}'\left(\mathrm{8}\right)=\frac{\mathrm{1}}{{f}\:'\left({f}^{−\mathrm{1}} \left(\mathrm{8}\right)\right)}...\left(\bullet\right) \\ $$$$ \\ $$$${consider}\:\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\:\frac{{f}\left({x}\right)−{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} −\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{{f}\:'\left({x}\right)−\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}{x}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Leftrightarrow\:{f}\:'\left(\mathrm{2}\right)−\mathrm{12}=\mathrm{2}\:;\:{f}\:'\left(\mathrm{2}\right)=\mathrm{14} \\ $$$${substitute}\:{into}\:\left(\bullet\right)\:{we}\:{get} \\ $$$${g}'\left(\mathrm{8}\right)=\frac{\mathrm{1}}{{f}\:'\left({f}^{−\mathrm{1}} \left(\mathrm{8}\right)\right)}=\frac{\mathrm{1}}{{f}\:'\left(\mathrm{2}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{14}}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com