Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 123812 by benjo_mathlover last updated on 28/Nov/20

Within the interval 0≤x≤2π ,find   the critical points of   f(x)= sin^2 x−sin x−1 . Identify  the open interval on which f is   increasing and decreasing . Find  the function′s local and absolute  extreme values.

Withintheinterval0x2π,findthecriticalpointsoff(x)=sin2xsinx1.Identifytheopenintervalonwhichfisincreasinganddecreasing.Findthefunctionslocalandabsoluteextremevalues.

Answered by liberty last updated on 28/Nov/20

The function f is continous over [ 0,2π ] and differentiable over (0,2π)   so the critical points occur at the zeros of f ′ in (0,2π) . We find   f ′(x)= (2sin x−1)cos x . The first derivative is zero if only if sin x=(1/2)  or cos x=0 . So the critical points of f in (0,2π) are x=(π/6); ((5π)/6); (π/2); ((3π)/2)  they partition [0,2π] into open intervals as follows   interval :                    (0,(π/6))               ((π/6),(π/2))                ((π/2),((5π)/6))                  (((5π)/6),((3π)/2))              (((3π)/2),2π)  sign of f ′ :                       −                          +                           −                               +                           −  behavior of f :             dec                         inc                        dec                            inc                       dec  there is a local minimum value of f((π/6))=−(5/4), a local maximum value of  f((π/2))=−1, another local minimum value of f(((5π)/6))=−(5/4) and another local  maximum value of f(((3π)/2))= 1. The endpoint value are f(0)=f(2π)=−1. The  absolute minimum in [ 0,2π ] is −(5/4) occuring at x=(π/6) and x=((5π)/6); the absolute  maximum is 1 occuring at x=((3π)/2).

Thefunctionfiscontinousover[0,2π]anddifferentiableover(0,2π)sothecriticalpointsoccuratthezerosoffin(0,2π).Wefindf(x)=(2sinx1)cosx.Thefirstderivativeiszeroifonlyifsinx=12orcosx=0.Sothecriticalpointsoffin(0,2π)arex=π6;5π6;π2;3π2theypartition[0,2π]intoopenintervalsasfollowsinterval:(0,π6)(π6,π2)(π2,5π6)(5π6,3π2)(3π2,2π)signoff:++behavioroff:decincdecincdecthereisalocalminimumvalueoff(π6)=54,alocalmaximumvalueoff(π2)=1,anotherlocalminimumvalueoff(5π6)=54andanotherlocalmaximumvalueoff(3π2)=1.Theendpointvaluearef(0)=f(2π)=1.Theabsoluteminimumin[0,2π]is54occuringatx=π6andx=5π6;theabsolutemaximumis1occuringatx=3π2.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com