Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 123823 by Dwaipayan Shikari last updated on 28/Nov/20

Answered by mindispower last updated on 29/Nov/20

(1+x)^a =1+Σ_(n≥1) (1/(n!))Π_(k=0) ^(n−1) (a−k).x^n   (1−ksin^2 (x))^(−(1/2)) =1+Σ(1/(n!))Π_(k=0) ^(n−1) (−(1/2)−k).sin^(2n) (x)  =1+Σ_(n≥1) (((−1)^n )/(n!2^n ))Π_(k≤n−1) (1+2k).k^n sin^(2n) (x)  =1+Σ_(n≥1) (((−1)^n (2n−1)!!)/(n!.2^n ))k^n sin^(2n) (x)  ∫_0 ^(π/2) (dx/( (√(1−ksin^2 (x)))))=∫_0 ^(π/2) (1+Σ_(n≥1) (((−1)^n )/(n!.2^n ))(2n−1)!!.k^n sin^(2n) (x))dx  S_n =(π/2)+Σ(((−1)^n (2n−1)!!.k^n )/(2^n n!))∫_0 ^(π/2) sin^(2n) (x)dx  ∫_0 ^(π/2) sin^a (x)=(1/2).2∫_0 ^(π/2) sin^(2((a/2)+(1/2))−1) cos^(2(1/2)−1) (x)dx  (1/2)β((a/2)+(1/2),(1/2))=((Γ((a/2)+(1/2))Γ((1/2)))/(2Γ(1+(a/2)))) , valid for Re(a)>−1  s_n =(π/2)+Σ_(n≥1) (((−1)^n (2n−1)!!)/(2^n .n!)).k^n .(1/2)((Γ(n+(1/2))Γ((1/2)))/(Γ(1+n)))  Γ(n+(1/2))=Π_(k=0) ^(n−1) (n−(1/2)−k)Γ((1/2)),Γ((1/2))=(√π)  Γ(1+n)=n!  ⇔  S_n =(π/2)+Σ_(n≥1) (((−1)^n (2n−1)!!)/(2^n n!))k^n .(1/2)Π_(k≤n−1) (((2n−1−2k)/2))Γ((1/2))Γ((1/2)).(1/(n!))  =(π/2)+Σ_(n≥1) (((−1)^n (2n−1)!!.(2n−1)!!)/(2^n n!.2.2^n n!))k^n Γ^2 ((1/2))  =(π/2)+Σ_(n≥1) ((((2n−1)!!)/(n!)))^2 (((−k)^n π)/2^(2n+1) )  somthing missing  not,Σ_(n≥0) ((((2n−1)!!)/(n!)))^2 ....  by comparison⇒(−k)^n =256^n   ⇒(−k)^n =256^n e^(2iπm)   ⇒−k=256e^((2iπm)/n) ,∀n tru   n→∞,−k=256⇒k=−256  (√k)=+_− 16i

(1+x)a=1+n11n!n1k=0(ak).xn(1ksin2(x))12=1+Σ1n!n1k=0(12k).sin2n(x)=1+n1(1)nn!2nkn1(1+2k).knsin2n(x)=1+n1(1)n(2n1)!!n!.2nknsin2n(x)0π2dx1ksin2(x)=0π2(1+n1(1)nn!.2n(2n1)!!.knsin2n(x))dxSn=π2+Σ(1)n(2n1)!!.kn2nn!0π2sin2n(x)dx0π2sina(x)=12.20π2sin2(a2+12)1cos2121(x)dx12β(a2+12,12)=Γ(a2+12)Γ(12)2Γ(1+a2),validforRe(a)>1sn=π2+n1(1)n(2n1)!!2n.n!.kn.12Γ(n+12)Γ(12)Γ(1+n)Γ(n+12)=n1k=0(n12k)Γ(12),Γ(12)=πΓ(1+n)=n!Sn=π2+n1(1)n(2n1)!!2nn!kn.12kn1(2n12k2)Γ(12)Γ(12).1n!=π2+n1(1)n(2n1)!!.(2n1)!!2nn!.2.2nn!knΓ2(12)=π2+n1((2n1)!!n!)2(k)nπ22n+1somthingmissingnot,n0((2n1)!!n!)2....bycomparison(k)n=256n(k)n=256ne2iπmk=256e2iπmn,ntrun,k=256k=256k=+16i

Commented by mnjuly1970 last updated on 29/Nov/20

excellent sir ...

excellentsir...

Commented by Dwaipayan Shikari last updated on 29/Nov/20

This is  a question from′′ Brilliant ′′

ThisisaquestionfromBrilliant

Commented by Dwaipayan Shikari last updated on 29/Nov/20

https://brilliant.org/problems/elliptic-integral

Commented by mindispower last updated on 29/Nov/20

we can use (x+1)!!=(x+1)(x−1)!!  ⇒1!!=1.(−1)!!  ⇒(−1)!!=1  withe that  n=0  ((((−1)!!)/(0!)))^2 .((256^0 .π)/2^(2.0+1) )=(π/2)  we are donne

wecanuse(x+1)!!=(x+1)(x1)!!1!!=1.(1)!!(1)!!=1withethatn=0((1)!!0!)2.2560.π22.0+1=π2wearedonne

Terms of Service

Privacy Policy

Contact: info@tinkutara.com