Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 123876 by john_santu last updated on 29/Nov/20

Find the distance from the   point S(1,1,5) to the line   L :  { ((x=1+t)),((y=3−t )),((z=2t)) :}.

FindthedistancefromthepointS(1,1,5)tothelineL:{x=1+ty=3tz=2t.

Answered by mr W last updated on 29/Nov/20

Method I  d^2 =(1+t−1)^2 +(3−t−1)^2 +(2t−5)^2   =6t^2 −24t+29  ((d(d^2 ))/dt)=12t−24=0  ⇒t=2  d_(min) ^2 =6×2^2 −24×2+29=5  ⇒distance=d_(min) =(√5)

MethodId2=(1+t1)2+(3t1)2+(2t5)2=6t224t+29d(d2)dt=12t24=0t=2dmin2=6×2224×2+29=5distance=dmin=5

Answered by mr W last updated on 29/Nov/20

Method II  S(1,1,5)  P(1,3,0)  PQ=(1,−1,2)  PS=(0,2,−5)  distance=(√(∣PS∣^2 −(((PQ•PS)/(∣PQ∣)))^2 ))  =(√(0^2 +2^2 +(−5)^2 −(((1×0−1×2−2×5)^2 )/(1^2 +(−1)^2 +2^2 ))))  =(√(29−24))  =(√5)

MethodIIS(1,1,5)P(1,3,0)PQ=(1,1,2)PS=(0,2,5)distance=PS2(PQPSPQ)2=02+22+(5)2(1×01×22×5)212+(1)2+22=2924=5

Answered by mr W last updated on 29/Nov/20

Method III  S(1,1,5)  P(1,3,0)  SP=(0,2,−5)  PQ=(1,−1,2)  distance=((∣SP×PQ∣)/(∣PQ∣))=((∣(0,2,−5)×(1,−1,2)∣)/( (√(1^2 +(−1)^2 +2^2 ))))  =((√((−1)^2 +(−5)^2 +(−2)^2 ))/( (√6)))  =(√((30)/6))  =(√5)

MethodIIIS(1,1,5)P(1,3,0)SP=(0,2,5)PQ=(1,1,2)distance=SP×PQPQ=(0,2,5)×(1,1,2)12+(1)2+22=(1)2+(5)2+(2)26=306=5

Terms of Service

Privacy Policy

Contact: info@tinkutara.com