Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123900 by mnjuly1970 last updated on 29/Nov/20

         ... advanced  integral...     prove  that ::        Ω=∫_0 ^( ∞) ((sin^2 (x))/(x^2 (1+x^2 )))dx =(π/4)(1+(π/e^2 ))

...advancedintegral...provethat::Ω=0sin2(x)x2(1+x2)dx=π4(1+πe2)

Answered by mathmax by abdo last updated on 29/Nov/20

I=∫_0 ^∞  ((sin^2 x)/(x^2 (1+x^2 )))dx ⇒I =∫_0 ^∞ ((1/x^2 )−(1/(1+x^2 )))sin^2 x dx  =∫_0 ^∞  ((sin^2 x)/x^2 )−∫_0 ^∞  ((sin^2 x)/(x^2  +1))dx  we have by[psrts  ∫_0 ^∞  ((sin^2 x)/x^2 )dx =[−((sin^2 x)/x)]_0 ^∞ +∫_0 ^∞ ((2sinx cosx)/x)dx  =∫_0 ^∞  ((sin(2x))/x)dx =_(2x=t)    ∫_0 ^∞  ((sin(t))/(t/2))(dt/2)=∫_0 ^∞  ((sint)/t)dt=(π/2)  ∫_0 ^∞  ((sin^2 x)/(x^2  +1))dx =∫_0 ^∞ ((1−cos(2x))/(2(x^2  +1)))dx =(1/2)∫_0 ^∞ (dx/(x^2  +1))−(1/2)∫_0 ^∞ ((cos(2x))/(x^2  +1))dx  =(π/4)−(1/2)∫_0 ^∞  ((cos(2x))/(x^2  +1))dx  we have  ∫_0 ^∞  ((cos(2x))/(x^2  +1))dx =(1/2)Re(∫_(−∞) ^(+∞)  (e^(2ix) /(x^2 +1))dx)  ∫_(−∞) ^(+∞)  (e^(2ix) /(x^2 +1))dx =2iπ×(e^(−2) /(2i)) =(π/e^2 ) ⇒∫_0 ^∞  ((cos(2x))/(x^2  +1))dx=(π/(2e^2 )) ⇒  I =(π/2)−(π/4) +(1/2).(π/(2e^2 )) =(π/4)+(π/(4e^2 )) =(π/4)(1+(1/e^2 ))

I=0sin2xx2(1+x2)dxI=0(1x211+x2)sin2xdx=0sin2xx20sin2xx2+1dxwehaveby[psrts0sin2xx2dx=[sin2xx]0+02sinxcosxxdx=0sin(2x)xdx=2x=t0sin(t)t2dt2=0sinttdt=π20sin2xx2+1dx=01cos(2x)2(x2+1)dx=120dxx2+1120cos(2x)x2+1dx=π4120cos(2x)x2+1dxwehave0cos(2x)x2+1dx=12Re(+e2ixx2+1dx)+e2ixx2+1dx=2iπ×e22i=πe20cos(2x)x2+1dx=π2e2I=π2π4+12.π2e2=π4+π4e2=π4(1+1e2)

Commented by mnjuly1970 last updated on 29/Nov/20

grateful my master sir max

gratefulmymastersirmax

Commented by mathmax by abdo last updated on 29/Nov/20

you are welcome sir

youarewelcomesir

Answered by mindispower last updated on 29/Nov/20

Ω=∫_0 ^∞ (((1+x^2 −x^2 )sin^2 (x)dx)/(x^2 (1+x^2 )))  ∫((sin^2 (x))/x^2 )−∫_0 ^∞ ((sin^2 (x))/(1+x^2 ))dx  sin^2 (x)=((1−cos(2x))/2)  Ω=∫((sin^2 (x))/x_(=A) ^2 )−∫(dx/(2(1+x^2 )))+(1/2)∫_0 ^∞ ((cos(2x))/(1+x^2 ))dx  A by part  [−((sin^2 (x))/x)]_0 ^∞ +∫_0 ^∞ ((sin(2x))/x)dx  =∫_0 ^∞ 2.sin(2x).(dx/(2x))=∫_0 ^∞ ((sin(t))/t)dt=(π/2)  ∫_0 ^∞ (dx/(2(1+x^2 )))=(1/2)arctan(x)]_0 ^∞ =(π/4)  Ω=(π/2)−(π/4)+(1/2)∫((cos(2x))/(1+x^2 ))dx(π/4)+(1/2)B  B=(1/2)∫_(−∞) ^∞ ((cos(2x))/(1+x^2 ))dx=(1/2)Re∫_(−∞) ^∞ (e^(2ix) /(1+x^2 ))dx  =(1/2).2iπRes((e^(2ix) /(1+x^2 )),x=i{  =iπ(e^(−2) /(2i))=(π/e^2 )  Ω=(π/4)+.(1/2)(π/(2e^2 ))=(π/4)(1+(1/e^2 ))

Ω=0(1+x2x2)sin2(x)dxx2(1+x2)sin2(x)x20sin2(x)1+x2dxsin2(x)=1cos(2x)2Ω=sin2(x)x=A2dx2(1+x2)+120cos(2x)1+x2dxAbypart[sin2(x)x]0+0sin(2x)xdx=02.sin(2x).dx2x=0sin(t)tdt=π20dx2(1+x2)=12arctan(x)]0=π4Ω=π2π4+12cos(2x)1+x2dxπ4+12BB=12cos(2x)1+x2dx=12Ree2ix1+x2dx=12.2iπRes(e2ix1+x2,x=i{=iπe22i=πe2Ω=π4+.12π2e2=π4(1+1e2)

Commented by mnjuly1970 last updated on 29/Nov/20

thanks alot sir mindspower   nice  as always...

thanksalotsirmindspowerniceasalways...

Commented by mindispower last updated on 29/Nov/20

withe pleasur   sad not times too do maths these days

withepleasursadnottimestoodomathsthesedays

Commented by mnjuly1970 last updated on 29/Nov/20

i hope you are successful  in all stages of your life   god  keep  you..

ihopeyouaresuccessfulinallstagesofyourlifegodkeepyou..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com