Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123900 by mnjuly1970 last updated on 29/Nov/20

         ... advanced  integral...     prove  that ::        Ω=∫_0 ^( ∞) ((sin^2 (x))/(x^2 (1+x^2 )))dx =(π/4)(1+(π/e^2 ))

$$\:\:\:\:\:\:\:\:\:...\:{advanced}\:\:{integral}... \\ $$$$\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)}{dx}\:=\frac{\pi}{\mathrm{4}}\left(\mathrm{1}+\frac{\pi}{{e}^{\mathrm{2}} }\right) \\ $$

Answered by mathmax by abdo last updated on 29/Nov/20

I=∫_0 ^∞  ((sin^2 x)/(x^2 (1+x^2 )))dx ⇒I =∫_0 ^∞ ((1/x^2 )−(1/(1+x^2 )))sin^2 x dx  =∫_0 ^∞  ((sin^2 x)/x^2 )−∫_0 ^∞  ((sin^2 x)/(x^2  +1))dx  we have by[psrts  ∫_0 ^∞  ((sin^2 x)/x^2 )dx =[−((sin^2 x)/x)]_0 ^∞ +∫_0 ^∞ ((2sinx cosx)/x)dx  =∫_0 ^∞  ((sin(2x))/x)dx =_(2x=t)    ∫_0 ^∞  ((sin(t))/(t/2))(dt/2)=∫_0 ^∞  ((sint)/t)dt=(π/2)  ∫_0 ^∞  ((sin^2 x)/(x^2  +1))dx =∫_0 ^∞ ((1−cos(2x))/(2(x^2  +1)))dx =(1/2)∫_0 ^∞ (dx/(x^2  +1))−(1/2)∫_0 ^∞ ((cos(2x))/(x^2  +1))dx  =(π/4)−(1/2)∫_0 ^∞  ((cos(2x))/(x^2  +1))dx  we have  ∫_0 ^∞  ((cos(2x))/(x^2  +1))dx =(1/2)Re(∫_(−∞) ^(+∞)  (e^(2ix) /(x^2 +1))dx)  ∫_(−∞) ^(+∞)  (e^(2ix) /(x^2 +1))dx =2iπ×(e^(−2) /(2i)) =(π/e^2 ) ⇒∫_0 ^∞  ((cos(2x))/(x^2  +1))dx=(π/(2e^2 )) ⇒  I =(π/2)−(π/4) +(1/2).(π/(2e^2 )) =(π/4)+(π/(4e^2 )) =(π/4)(1+(1/e^2 ))

$$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{x}^{\mathrm{2}} \right)}\mathrm{dx}\:\Rightarrow\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\right)\mathrm{sin}^{\mathrm{2}} \mathrm{x}\:\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} }−\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx}\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{by}\left[\mathrm{psrts}\right. \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:=\left[−\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{x}}\right]_{\mathrm{0}} ^{\infty} +\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{2sinx}\:\mathrm{cosx}}{\mathrm{x}}\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\left(\mathrm{2x}\right)}{\mathrm{x}}\mathrm{dx}\:=_{\mathrm{2x}=\mathrm{t}} \:\:\:\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}\left(\mathrm{t}\right)}{\frac{\mathrm{t}}{\mathrm{2}}}\frac{\mathrm{dt}}{\mathrm{2}}=\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sint}}{\mathrm{t}}\mathrm{dt}=\frac{\pi}{\mathrm{2}} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{sin}^{\mathrm{2}} \mathrm{x}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx}\:=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}−\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}\right)}\mathrm{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx} \\ $$$$=\frac{\pi}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx}\:\:\mathrm{we}\:\mathrm{have} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Re}\left(\int_{−\infty} ^{+\infty} \:\frac{\mathrm{e}^{\mathrm{2ix}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx}\right) \\ $$$$\int_{−\infty} ^{+\infty} \:\frac{\mathrm{e}^{\mathrm{2ix}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}\mathrm{dx}\:=\mathrm{2i}\pi×\frac{\mathrm{e}^{−\mathrm{2}} }{\mathrm{2i}}\:=\frac{\pi}{\mathrm{e}^{\mathrm{2}} }\:\Rightarrow\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{cos}\left(\mathrm{2x}\right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{1}}\mathrm{dx}=\frac{\pi}{\mathrm{2e}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\mathrm{I}\:=\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}\:+\frac{\mathrm{1}}{\mathrm{2}}.\frac{\pi}{\mathrm{2e}^{\mathrm{2}} }\:=\frac{\pi}{\mathrm{4}}+\frac{\pi}{\mathrm{4e}^{\mathrm{2}} }\:=\frac{\pi}{\mathrm{4}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{e}^{\mathrm{2}} }\right) \\ $$

Commented by mnjuly1970 last updated on 29/Nov/20

grateful my master sir max

$${grateful}\:{my}\:{master}\:{sir}\:{max} \\ $$

Commented by mathmax by abdo last updated on 29/Nov/20

you are welcome sir

$$\mathrm{you}\:\mathrm{are}\:\mathrm{welcome}\:\mathrm{sir} \\ $$

Answered by mindispower last updated on 29/Nov/20

Ω=∫_0 ^∞ (((1+x^2 −x^2 )sin^2 (x)dx)/(x^2 (1+x^2 )))  ∫((sin^2 (x))/x^2 )−∫_0 ^∞ ((sin^2 (x))/(1+x^2 ))dx  sin^2 (x)=((1−cos(2x))/2)  Ω=∫((sin^2 (x))/x_(=A) ^2 )−∫(dx/(2(1+x^2 )))+(1/2)∫_0 ^∞ ((cos(2x))/(1+x^2 ))dx  A by part  [−((sin^2 (x))/x)]_0 ^∞ +∫_0 ^∞ ((sin(2x))/x)dx  =∫_0 ^∞ 2.sin(2x).(dx/(2x))=∫_0 ^∞ ((sin(t))/t)dt=(π/2)  ∫_0 ^∞ (dx/(2(1+x^2 )))=(1/2)arctan(x)]_0 ^∞ =(π/4)  Ω=(π/2)−(π/4)+(1/2)∫((cos(2x))/(1+x^2 ))dx(π/4)+(1/2)B  B=(1/2)∫_(−∞) ^∞ ((cos(2x))/(1+x^2 ))dx=(1/2)Re∫_(−∞) ^∞ (e^(2ix) /(1+x^2 ))dx  =(1/2).2iπRes((e^(2ix) /(1+x^2 )),x=i{  =iπ(e^(−2) /(2i))=(π/e^2 )  Ω=(π/4)+.(1/2)(π/(2e^2 ))=(π/4)(1+(1/e^2 ))

$$\Omega=\int_{\mathrm{0}} ^{\infty} \frac{\left(\mathrm{1}+{x}^{\mathrm{2}} −{x}^{\mathrm{2}} \right){sin}^{\mathrm{2}} \left({x}\right){dx}}{{x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)} \\ $$$$\int\frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}^{\mathrm{2}} }−\int_{\mathrm{0}} ^{\infty} \frac{{sin}^{\mathrm{2}} \left({x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${sin}^{\mathrm{2}} \left({x}\right)=\frac{\mathrm{1}−{cos}\left(\mathrm{2}{x}\right)}{\mathrm{2}} \\ $$$$\Omega=\int\frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}_{={A}} ^{\mathrm{2}} }−\int\frac{{dx}}{\mathrm{2}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$${A}\:{by}\:{part} \\ $$$$\left[−\frac{{sin}^{\mathrm{2}} \left({x}\right)}{{x}}\right]_{\mathrm{0}} ^{\infty} +\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left(\mathrm{2}{x}\right)}{{x}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \mathrm{2}.{sin}\left(\mathrm{2}{x}\right).\frac{{dx}}{\mathrm{2}{x}}=\int_{\mathrm{0}} ^{\infty} \frac{{sin}\left({t}\right)}{{t}}{dt}=\frac{\pi}{\mathrm{2}} \\ $$$$\left.\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{2}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}=\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left({x}\right)\right]_{\mathrm{0}} ^{\infty} =\frac{\pi}{\mathrm{4}} \\ $$$$\Omega=\frac{\pi}{\mathrm{2}}−\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}\frac{\pi}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}{B} \\ $$$${B}=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{\infty} \frac{{cos}\left(\mathrm{2}{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx}=\frac{\mathrm{1}}{\mathrm{2}}{Re}\int_{−\infty} ^{\infty} \frac{{e}^{\mathrm{2}{ix}} }{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{2}{i}\pi{Res}\left(\frac{{e}^{\mathrm{2}{ix}} }{\mathrm{1}+{x}^{\mathrm{2}} },{x}={i}\left\{\right.\right. \\ $$$$={i}\pi\frac{{e}^{−\mathrm{2}} }{\mathrm{2}{i}}=\frac{\pi}{{e}^{\mathrm{2}} } \\ $$$$\Omega=\frac{\pi}{\mathrm{4}}+.\frac{\mathrm{1}}{\mathrm{2}}\frac{\pi}{\mathrm{2}{e}^{\mathrm{2}} }=\frac{\pi}{\mathrm{4}}\left(\mathrm{1}+\frac{\mathrm{1}}{{e}^{\mathrm{2}} }\right) \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 29/Nov/20

thanks alot sir mindspower   nice  as always...

$${thanks}\:{alot}\:{sir}\:{mindspower} \\ $$$$\:{nice}\:\:{as}\:{always}... \\ $$

Commented by mindispower last updated on 29/Nov/20

withe pleasur   sad not times too do maths these days

$${withe}\:{pleasur}\: \\ $$$${sad}\:{not}\:{times}\:{too}\:{do}\:{maths}\:{these}\:{days} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 29/Nov/20

i hope you are successful  in all stages of your life   god  keep  you..

$${i}\:{hope}\:{you}\:{are}\:{successful} \\ $$$${in}\:{all}\:{stages}\:{of}\:{your}\:{life}\: \\ $$$${god}\:\:{keep}\:\:{you}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com