All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 123920 by john_santu last updated on 29/Nov/20
∫(x−1)x4+2x3−x2+2x+1x2(x+1)dx?
Answered by liberty last updated on 29/Nov/20
(∙)x−1x2(x+1)=x2−1x2(x+1)2=(1−1x2)(1x2(x+1x+2))(∙∙)x4+2x3−x2+2x+1=x2(x2+1x2+2(x+1x)−1)=x2((x+1x)2+2(x+1x)−3)=x2((x+1x+1)2−4)letting2secv=x+1x+1T=∫4sec2v−42secv+1(2secvtanv)dvT=∫4tan2vsecv2secv+1dv=∫(2sec2v−secv)dv−∫3secvdv2secv+1T=2tanv−ℓn∣secv+tanv∣−∫3(2−cosv)4−cos2vdvletL=∫6−3cosv4−cos2vdv=∫6sec2v4sec2v−1dv−∫3cosv3+sin2vdvL=∫6du4u2+3[u=tanv]−∫3dj3+j2[j=sinv]L=3tan−1(2u3)−3tan−1(j3)L=3tan−1(2tanv3)−3tan−1(sinv3)ThusT=2tanv−ℓn∣secv+tanv∣−3{tan−1(2tanv3)−tan−1(sinv3)}+cwherev=sec−1(x2+x+12x).
Answered by MJS_new last updated on 29/Nov/20
∫(x−1)x4+2x3−x2+2x+1x2(x+1)dx==∫(x−1)(x2−x+1)(x2+3x+1)x2(x+1)dx=[t=x2−x+1x2+3x+1→dx=(x2+3x+1)3/2x2−x+12(x2−1)dt]=32∫t2t6+t4−5t2+3dt==32∫t2(t−1)2(t+1)2(t2+3)dt==2∫dt(t−1)2+2∫dt(t+1)2−6∫dtt2+3+∫dtt−1−∫dtt+1==−2t−1−2t+1−23arctan3t3+ln(t−1)−ln(t+1)==−4tt2−1−23arctan3t3+lnt−1t+1==(x2−x+1)(x2+3x+1)x−23arctan3(x2−x+1)3x2+3x+1+ln∣x2+x+1−(x2−x+1)(x2+3x+1)2x∣+C
Commented by liberty last updated on 29/Nov/20
wawgreat
Terms of Service
Privacy Policy
Contact: info@tinkutara.com