Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123920 by john_santu last updated on 29/Nov/20

 ∫ (((x−1)(√(x^4 +2x^3 −x^2 +2x+1)))/(x^2 (x+1))) dx ?

(x1)x4+2x3x2+2x+1x2(x+1)dx?

Answered by liberty last updated on 29/Nov/20

(•) ((x−1)/(x^2 (x+1))) = ((x^2 −1)/(x^2 (x+1)^2 )) =(1−(1/x^2 ))((1/(x^2 (x+(1/x)+2))))  (••) x^4 +2x^3 −x^2 +2x+1=x^2 (x^2 +(1/x^2 )+2(x+(1/x))−1)     = x^2 ((x+(1/x))^2 +2(x+(1/x))−3)=x^2 ((x+(1/x)+1)^2 −4)  letting 2sec v = x+(1/x)+1   T=∫ ((√(4sec^2 v−4))/(2sec v+1)) (2sec v tan v )dv  T=∫ ((4tan^2 v sec v )/(2sec v +1)) dv = ∫(2sec^2 v−sec v)dv−∫((3sec v dv)/(2sec v +1))  T= 2tan v −ℓn ∣sec v + tan v∣ −∫ ((3(2−cos v))/(4−cos^2 v)) dv  let L=∫ ((6−3cos v)/(4−cos^2 v)) dv = ∫ ((6sec^2 v)/(4sec^2 v−1))dv−∫((3cos v)/(3+sin^2 v)) dv  L=∫ ((6du)/(4u^2 +3)) [ u = tan v ] −∫((3dj)/(3+j^2 )) [ j = sin v ]  L= (√3) tan^(−1) (((2u)/( (√3))))−(√3) tan^(−1) ((j/( (√3))))   L= (√3) tan^(−1) (((2tan v)/( (√3))))−(√3) tan^(−1) (((sin v)/( (√3))))  Thus T = 2tan v −ℓn∣sec v + tan v ∣−                       (√3) {tan^(−1) (((2tan v)/( (√3))))−tan^(−1) (((sin v)/( (√3))))}+ c  where v = sec^(−1) (((x^2 +x+1)/(2x))) .

()x1x2(x+1)=x21x2(x+1)2=(11x2)(1x2(x+1x+2))()x4+2x3x2+2x+1=x2(x2+1x2+2(x+1x)1)=x2((x+1x)2+2(x+1x)3)=x2((x+1x+1)24)letting2secv=x+1x+1T=4sec2v42secv+1(2secvtanv)dvT=4tan2vsecv2secv+1dv=(2sec2vsecv)dv3secvdv2secv+1T=2tanvnsecv+tanv3(2cosv)4cos2vdvletL=63cosv4cos2vdv=6sec2v4sec2v1dv3cosv3+sin2vdvL=6du4u2+3[u=tanv]3dj3+j2[j=sinv]L=3tan1(2u3)3tan1(j3)L=3tan1(2tanv3)3tan1(sinv3)ThusT=2tanvnsecv+tanv3{tan1(2tanv3)tan1(sinv3)}+cwherev=sec1(x2+x+12x).

Answered by MJS_new last updated on 29/Nov/20

∫(((x−1)(√(x^4 +2x^3 −x^2 +2x+1)))/(x^2 (x+1)))dx=  =∫(((x−1)(√((x^2 −x+1)(x^2 +3x+1))))/(x^2 (x+1)))dx=       [t=((√(x^2 −x+1))/( (√(x^2 +3x+1)))) → dx=(((x^2 +3x+1)^(3/2) (√(x^2 −x+1)))/(2(x^2 −1)))dt]  =32∫(t^2 /(t^6 +t^4 −5t^2 +3))dt=  =32∫(t^2 /((t−1)^2 (t+1)^2 (t^2 +3)))dt=  =2∫(dt/((t−1)^2 ))+2∫(dt/((t+1)^2 ))−6∫(dt/(t^2 +3))+∫(dt/(t−1))−∫(dt/(t+1))=  =−(2/(t−1))−(2/(t+1))−2(√3)arctan (((√3)t)/3) +ln (t−1) −ln (t+1) =  =−((4t)/(t^2 −1))−2(√3)arctan (((√3)t)/3) +ln ((t−1)/(t+1)) =  =((√((x^2 −x+1)(x^2 +3x+1)))/x)−2(√3)arctan ((√(3(x^2 −x+1)))/(3(√(x^2 +3x+1)))) +ln ∣((x^2 +x+1−(√((x^2 −x+1)(x^2 +3x+1))))/(2x))∣ +C

(x1)x4+2x3x2+2x+1x2(x+1)dx==(x1)(x2x+1)(x2+3x+1)x2(x+1)dx=[t=x2x+1x2+3x+1dx=(x2+3x+1)3/2x2x+12(x21)dt]=32t2t6+t45t2+3dt==32t2(t1)2(t+1)2(t2+3)dt==2dt(t1)2+2dt(t+1)26dtt2+3+dtt1dtt+1==2t12t+123arctan3t3+ln(t1)ln(t+1)==4tt2123arctan3t3+lnt1t+1==(x2x+1)(x2+3x+1)x23arctan3(x2x+1)3x2+3x+1+lnx2+x+1(x2x+1)(x2+3x+1)2x+C

Commented by liberty last updated on 29/Nov/20

waw great

wawgreat

Terms of Service

Privacy Policy

Contact: info@tinkutara.com