Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123921 by john_santu last updated on 29/Nov/20

∫ (1/( (√x) (x+1)((tan^(−1) (√x))^2 +9)))dx

1x(x+1)((tan1x)2+9)dx

Answered by mindispower last updated on 29/Nov/20

=∫(2/((t^2 +1)(tan^− (t)^2 +9)))   =∫(2/((1+t^2 )(1+(((tan^− (t))/3))^2 )))dt  =∫((6d(((tan^− (t))/3)))/((1+(((tan^− (t))/3))^2 )))=6tan^− (((tan^− (t))/3))  t=(√x)  we get 6tan^− (((tan^− ((√x)))/3))+c

=2(t2+1)(tan(t)2+9)=2(1+t2)(1+(tan(t)3)2)dt=6d(tan(t)3)(1+(tan(t)3)2)=6tan(tan(t)3)t=xweget6tan(tan(x)3)+c

Commented by Mammadli last updated on 29/Nov/20

Commented by liberty last updated on 29/Nov/20

=(1/5)∫ sec^2 (5x) d(5x) = (1/5)tan (5x) + c   ∫_(π/6) ^(π/4)  (dx/(cos^2 (5x))) = (1/5)(tan ((5π)/4)−tan ((5π)/6))

=15sec2(5x)d(5x)=15tan(5x)+cπ/4π/6dxcos2(5x)=15(tan5π4tan5π6)

Commented by Dwaipayan Shikari last updated on 29/Nov/20

∫_(π/6) ^(π/4) sec^2 5x dx =(1/5)∫_((5π)/6) ^((5π)/4) sec^2 u du =(1/5)[tanu]_((5π)/6) ^((5π)/4) =(((√3)−1)/(5(√3)))

π6π4sec25xdx=155π65π4sec2udu=15[tanu]5π65π4=3153

Answered by Olaf last updated on 29/Nov/20

Let (√x) = tanθ  ∫((2tanθ(1+tan^2 θ)dθ)/(tanθ(tan^2 θ+1)(θ^2 +9)))  2∫(dθ/(θ^2 +9)) = 2×(1/3)arctan((θ/3)) = (2/3)arctan(((arctan(√x))/3))

Letx=tanθ2tanθ(1+tan2θ)dθtanθ(tan2θ+1)(θ2+9)2dθθ2+9=2×13arctan(θ3)=23arctan(arctanx3)

Answered by liberty last updated on 29/Nov/20

letting z = tan^(−1) (√x) ⇒(√x) = tan z   (dx/(2(√x))) = sec^2 z dz   Y = ∫ ((2sec^2 z dz)/((tan^2 z+1)(z^2 +9)))   Y= ∫ ((2 dz)/(z^2 +3^2 )) = (2/3) arctan ((z/3)) + c   Y= (2/3)arctan (((tan^(−1) (√x) )/3)) + c

lettingz=tan1xx=tanzdx2x=sec2zdzY=2sec2zdz(tan2z+1)(z2+9)Y=2dzz2+32=23arctan(z3)+cY=23arctan(tan1x3)+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com