Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123937 by mnjuly1970 last updated on 29/Nov/20

            ...nice      calculus...   prove that::   ∫_((−π)/4) ^(π/4) (((π−4x)tan(x))/(1−tan(x)))dx=^(???) πln(2)−(π^2 /4)

...nicecalculus...provethat::π4π4(π4x)tan(x)1tan(x)dx=???πln(2)π24

Answered by Dwaipayan Shikari last updated on 29/Nov/20

∫_(−(π/4)) ^(π/4) (((π−4x)tanx)/(1−tanx))dx=4∫_(−(π/4)) ^(π/4) ((x(1−tanx))/(2tanx))  =4∫_0 ^(π/4) xcotx−x dx  =2∫_0 ^(π/2) xcotx−x dx =2x[log(sinx)]_0 ^(π/2) −2∫_0 ^(π/2) log(sinx)−(π^2 /4)  =−2.(−(π/2)log(2))−(π^2 /4) =πlog(2)−(π^2 /4)  =−0.289815

π4π4(π4x)tanx1tanxdx=4π4π4x(1tanx)2tanx=40π4xcotxxdx=20π2xcotxxdx=2x[log(sinx)]0π220π2log(sinx)π24=2.(π2log(2))π24=πlog(2)π24=0.289815

Commented by mnjuly1970 last updated on 29/Nov/20

thank you so much...

thankyousomuch...

Commented by CanovasCamiseros last updated on 29/Nov/20

Please who can help me with hard differential equations questions?

Pleasewhocanhelpmewithharddifferentialequationsquestions?

Commented by Dwaipayan Shikari last updated on 29/Nov/20

Kindly post your problem sir!

Kindlypostyourproblemsir!

Answered by mnjuly1970 last updated on 29/Nov/20

solution:I=∫_((−π)/4) ^( (π/4)) (((π−4x)tan(x))/(1−tan(x)))dx  note ::  ∫_0 ^(π/2) ln(sin(x))dx=((−π)/2)ln(2)        =^(u=(π/4)−x) 4∫_0 ^( (π/2)) ((xtan((π/4)−u))/(1−tan((π/4)−u)))du   =4∫_0 ^( (π/2)) {((x((1−tan(u))/(1+tan(u))))/((2tan(x))/(1+tan(x))))}du   =2∫_0 ^( (π/2)) xcot(x)(1−tan(x))dx  =2∫_0 ^( (π/2)) xcot(x)dx−((π^2 /4))    =2{[xln(sin(x))]_0 ^(π/2) −∫_0 ^( (π/2)) ln(sin(x))dx}−(π^2 /4)     =−2∫_0 ^( (π/2)) ln(sin(x))dx−(π^2 /4)       =−2(((−π)/2)ln(2))−(π^2 /4)=πln(2)−(π^2 /4)                 ∴  ∫_((−π  )/4) ^( (π/4)) (((π−4x)tan(x))/(1−tan(x)))dx=πln(2)−(π^2 /4)  ✓

solution:I=π4π4(π4x)tan(x)1tan(x)dxnote::0π2ln(sin(x))dx=π2ln(2)=u=π4x40π2xtan(π4u)1tan(π4u)du=40π2{x1tan(u)1+tan(u)2tan(x)1+tan(x)}du=20π2xcot(x)(1tan(x))dx=20π2xcot(x)dx(π24)=2{[xln(sin(x))]0π20π2ln(sin(x))dx}π24=20π2ln(sin(x))dxπ24=2(π2ln(2))π24=πln(2)π24π4π4(π4x)tan(x)1tan(x)dx=πln(2)π24

Terms of Service

Privacy Policy

Contact: info@tinkutara.com