Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123937 by mnjuly1970 last updated on 29/Nov/20

            ...nice      calculus...   prove that::   ∫_((−π)/4) ^(π/4) (((π−4x)tan(x))/(1−tan(x)))dx=^(???) πln(2)−(π^2 /4)

$$\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:\:\:\:\:{calculus}... \\ $$$$\:{prove}\:{that}:: \\ $$$$\:\int_{\frac{−\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \frac{\left(\pi−\mathrm{4}{x}\right){tan}\left({x}\right)}{\mathrm{1}−{tan}\left({x}\right)}{dx}\overset{???} {=}\pi{ln}\left(\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$ \\ $$

Answered by Dwaipayan Shikari last updated on 29/Nov/20

∫_(−(π/4)) ^(π/4) (((π−4x)tanx)/(1−tanx))dx=4∫_(−(π/4)) ^(π/4) ((x(1−tanx))/(2tanx))  =4∫_0 ^(π/4) xcotx−x dx  =2∫_0 ^(π/2) xcotx−x dx =2x[log(sinx)]_0 ^(π/2) −2∫_0 ^(π/2) log(sinx)−(π^2 /4)  =−2.(−(π/2)log(2))−(π^2 /4) =πlog(2)−(π^2 /4)  =−0.289815

$$\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \frac{\left(\pi−\mathrm{4}{x}\right){tanx}}{\mathrm{1}−{tanx}}{dx}=\mathrm{4}\int_{−\frac{\pi}{\mathrm{4}}} ^{\frac{\pi}{\mathrm{4}}} \frac{{x}\left(\mathrm{1}−{tanx}\right)}{\mathrm{2}{tanx}} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} {xcotx}−{x}\:{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {xcotx}−{x}\:{dx}\:=\mathrm{2}{x}\left[{log}\left({sinx}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sinx}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$=−\mathrm{2}.\left(−\frac{\pi}{\mathrm{2}}{log}\left(\mathrm{2}\right)\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:=\pi{log}\left(\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:\:=−\mathrm{0}.\mathrm{289815} \\ $$

Commented by mnjuly1970 last updated on 29/Nov/20

thank you so much...

$${thank}\:{you}\:{so}\:{much}... \\ $$

Commented by CanovasCamiseros last updated on 29/Nov/20

Please who can help me with hard differential equations questions?

$$\boldsymbol{{Please}}\:\boldsymbol{{who}}\:\boldsymbol{{can}}\:\boldsymbol{{help}}\:\boldsymbol{{me}}\:\boldsymbol{{with}}\:\boldsymbol{{hard}}\:\boldsymbol{{differential}}\:\boldsymbol{{equations}}\:\boldsymbol{{questions}}? \\ $$

Commented by Dwaipayan Shikari last updated on 29/Nov/20

Kindly post your problem sir!

$${Kindly}\:{post}\:{your}\:{problem}\:{sir}! \\ $$

Answered by mnjuly1970 last updated on 29/Nov/20

solution:I=∫_((−π)/4) ^( (π/4)) (((π−4x)tan(x))/(1−tan(x)))dx  note ::  ∫_0 ^(π/2) ln(sin(x))dx=((−π)/2)ln(2)        =^(u=(π/4)−x) 4∫_0 ^( (π/2)) ((xtan((π/4)−u))/(1−tan((π/4)−u)))du   =4∫_0 ^( (π/2)) {((x((1−tan(u))/(1+tan(u))))/((2tan(x))/(1+tan(x))))}du   =2∫_0 ^( (π/2)) xcot(x)(1−tan(x))dx  =2∫_0 ^( (π/2)) xcot(x)dx−((π^2 /4))    =2{[xln(sin(x))]_0 ^(π/2) −∫_0 ^( (π/2)) ln(sin(x))dx}−(π^2 /4)     =−2∫_0 ^( (π/2)) ln(sin(x))dx−(π^2 /4)       =−2(((−π)/2)ln(2))−(π^2 /4)=πln(2)−(π^2 /4)                 ∴  ∫_((−π  )/4) ^( (π/4)) (((π−4x)tan(x))/(1−tan(x)))dx=πln(2)−(π^2 /4)  ✓

$${solution}:\mathrm{I}=\int_{\frac{−\pi}{\mathrm{4}}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{\left(\pi−\mathrm{4}{x}\right){tan}\left({x}\right)}{\mathrm{1}−{tan}\left({x}\right)}{dx} \\ $$$${note}\:::\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({x}\right)\right){dx}=\frac{−\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\: \\ $$$$\:\:\:\:\:\overset{{u}=\frac{\pi}{\mathrm{4}}−{x}} {=}\mathrm{4}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \frac{{xtan}\left(\frac{\pi}{\mathrm{4}}−{u}\right)}{\mathrm{1}−{tan}\left(\frac{\pi}{\mathrm{4}}−{u}\right)}{du} \\ $$$$\:=\mathrm{4}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left\{\frac{{x}\frac{\mathrm{1}−{tan}\left({u}\right)}{\mathrm{1}+{tan}\left({u}\right)}}{\frac{\mathrm{2}{tan}\left({x}\right)}{\mathrm{1}+{tan}\left({x}\right)}}\right\}{du} \\ $$$$\:=\mathrm{2}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {xcot}\left({x}\right)\left(\mathrm{1}−{tan}\left({x}\right)\right){dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {xcot}\left({x}\right){dx}−\left(\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\right) \\ $$$$\:\:=\mathrm{2}\left\{\left[{xln}\left({sin}\left({x}\right)\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({x}\right)\right){dx}\right\}−\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:\:=−\mathrm{2}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({x}\right)\right){dx}−\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:\: \\ $$$$\:\:\:=−\mathrm{2}\left(\frac{−\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{4}}=\pi{ln}\left(\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\:\int_{\frac{−\pi\:\:}{\mathrm{4}}} ^{\:\frac{\pi}{\mathrm{4}}} \frac{\left(\pi−\mathrm{4}{x}\right){tan}\left({x}\right)}{\mathrm{1}−{tan}\left({x}\right)}{dx}=\pi{ln}\left(\mathrm{2}\right)−\frac{\pi^{\mathrm{2}} }{\mathrm{4}}\:\:\checkmark \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\: \\ $$$$\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com