Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123977 by mnjuly1970 last updated on 29/Nov/20

Answered by mathmax by abdo last updated on 29/Nov/20

let A =∫_0 ^(π/2) ln(cosx)dx  we have A =−(π/2)ln(2) also  A =∫_0 ^(π/2) ln(((e^(ix) +e^(−ix) )/2))dx =∫_0 ^(π/2) ln(e^(ix)  +e^(−ix) )dx−(π/2)ln(2) ⇒  ∫_0 ^(π/2) ln(e^(ix) +e^(−ix) )dx=0 ⇒∫_0 ^(π/2) ln(e^(ix) (1+e^(−2ix) ))=0 ⇒  [i(x^2 /2)]_0 ^(π/2)  +∫_0 ^(π/2) ln(1+e^(−2ix) )dx   we have ln^′ (1+u)=(1/(1+u))=Σ_(n=0) ^∞ (−1)^n u^n   ⇒ln(1+u)=Σ_(n=0) ^∞  (((−1)^n  u^(n+1) )/(n+1)) =Σ_(n=1) ^∞  (((−1)^(n−1) u^n )/n) ⇒  ∫_0 ^(π/2) ln(1+e^(−2ix) )=Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^(π/2) e^(−2inx) dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n)×(1/(−2in))[e^(−2inx) ]_0 ^(π/2)   =(i/2) Σ_(n=1) ^∞   (((−1)^(n−1) )/n^2 ){(−1)^n −1} =−iΣ_(n=0) ^∞ (1/((2n+1)^2 )) ⇒  i(π^2 /8)−iΣ_(n=0) ^∞  (1/((2n+1)^2 ))=0 ⇒Σ_(n=0) ^∞  (1/((2n+1)^2 ))=(π^2 /8)  we have Σ_(n=1) ^∞ (1/n^2 )=Σ_(n=1) ^∞  (1/(4n^2 ))+Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒  (3/4)Σ_(n=1) ^∞  (1/n^2 )=(π^2 /8) ⇒Σ_(n=1) ^∞  (1/n^2 )=(4/3)×(π^2 /8) =(π^2 /6)

letA=0π2ln(cosx)dxwehaveA=π2ln(2)alsoA=0π2ln(eix+eix2)dx=0π2ln(eix+eix)dxπ2ln(2)0π2ln(eix+eix)dx=00π2ln(eix(1+e2ix))=0[ix22]0π2+0π2ln(1+e2ix)dxwehaveln(1+u)=11+u=n=0(1)nunln(1+u)=n=0(1)nun+1n+1=n=1(1)n1unn0π2ln(1+e2ix)=n=1(1)n1n0π2e2inxdx=n=1(1)n1n×12in[e2inx]0π2=i2n=1(1)n1n2{(1)n1}=in=01(2n+1)2iπ28in=01(2n+1)2=0n=01(2n+1)2=π28wehaven=11n2=n=114n2+n=01(2n+1)234n=11n2=π28n=11n2=43×π28=π26

Commented by mnjuly1970 last updated on 29/Nov/20

thank you so much sir max  very nice as always...

thankyousomuchsirmaxveryniceasalways...

Commented by mathmax by abdo last updated on 30/Nov/20

you are welcome

youarewelcome

Answered by Dwaipayan Shikari last updated on 30/Nov/20

∫_0 ^(π/2) log(2cosx)dx  =(π/2)log(2)−(π/2)log(2)=0  Σ^∞ (1/n^2 ) =(1/1^2 )+(1/2^2 )+....  ((sinx)/x)=(1−(x^2 /π^2 ))(1−(x^2 /(4π^2 )))(1−(x^2 /(9π^2 )))...  1−(x^2 /(3!))+...=1−(x^2 /π^2 )−(x^2 /(4π^2 ))+(x^4 /(4π^4 ))−(x^2 /(9π^2 ))+...  (x^2 /(3!))=(x^2 /π^2 )+(x^2 /(4π^2 ))+(x^2 /(9π^2 ))+...  1+(1/2^2 )+(1/3^2 )+...=(π^2 /6)

0π2log(2cosx)dx=π2log(2)π2log(2)=01n2=112+122+....sinxx=(1x2π2)(1x24π2)(1x29π2)...1x23!+...=1x2π2x24π2+x44π4x29π2+...x23!=x2π2+x24π2+x29π2+...1+122+132+...=π26

Terms of Service

Privacy Policy

Contact: info@tinkutara.com