Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 123982 by Ar Brandon last updated on 29/Nov/20

Consider the D.E (E): x(x^2 +1)y′−2y=x^3 (x−1)^2 e^(−x)   a\ Resolve the DE x(x^3 +1)y′−2y=0  b\We wish to find a function g(x) such that the function  h(x) defined by h(x)=(x^3 /(x^2 +1))g(x)  is a particular solution of the equation (E)  i\ Show that for it to be as such, we need to have                              g′(x)=(x−1)^2 e^(−x)   ii\ Determine the real numbers α, β, and γ such that  the function x→αx^2 +βx+γ is a primitive in the interval  ]0,+∞[ of the function x→(x−1)^2 e^(−x)   iii\ Deduce a particular solution of the equation (E) then  the general solution of the equation (E)

ConsidertheD.E(E):x(x2+1)y2y=x3(x1)2exaResolvetheDEx(x3+1)y2y=0bWewishtofindafunctiong(x)suchthatthefunctionh(x)definedbyh(x)=x3x2+1g(x)isaparticularsolutionoftheequation(E)iShowthatforittobeassuch,weneedtohaveg(x)=(x1)2exiiDeterminetherealnumbersα,β,andγsuchthatthefunctionxαx2+βx+γisaprimitiveintheinterval]0,+[ofthefunctionx(x1)2exiiiDeduceaparticularsolutionoftheequation(E)thenthegeneralsolutionoftheequation(E)

Answered by mathmax by abdo last updated on 29/Nov/20

a)  x(x^3 +1)y^′ −2y=0 ⇒x(x^3 +1)y^′  =2y ⇒(y^′ /y)=(2/(x(x^3  +1))) ⇒  ln∣y∣=2∫  (dx/(x(x^3 +1)))  +c let decompose F(x)=(1/(x(x^3  +1)))  F(x)=(1/(x(x+1)(x^2 −x+1)))=(a/x)+(b/(x+1)) +((cx+d)/(x^2 −x+1))  a=1 ,  b =((−1)/3) ⇒F(x)=(1/x)−(1/(3(x+1))) +((cx+d)/(x^2 −x+1))  lim_(x→+∞) xF(x)=0 =1−(1/3) +c =(2/3)+c ⇒c=−(2/3)  F(1) =(1/2)=1−(1/6) +c+d =(5/6) +c+d ⇒1=(5/3) −(4/3) +2d ⇒  (1/3)+2d=1 ⇒2d=1−(1/3)=(2/3) ⇒d=(1/3) ⇒  F(x)=(1/x)−(1/(3(x+1))) +((−(2/3)x+(1/3))/(x^2 −x+1)) ⇒  ∫ F(x)dx=ln∣x∣−(1/3)ln∣x+1∣−(1/3)∫  ((2x−1)/(x^2 −x+1))dx  =ln(((∣x∣)/((^3 (√(∣x+1∣)))))−(1/3)ln(x^2 −x+1) +c  ln∣y∣ =2ln(((∣x∣)/((^3 (√(∣x+1∣)))))−(2/3)ln(x^2 −x+1) +c ⇒  y(x)=k ×(x^2 /((x+1)^(2/3) ))(x^2 −x+1)^(−(2/3))  =((kx^2 )/((x^3 +1)^(2/3) ))

a)x(x3+1)y2y=0x(x3+1)y=2yyy=2x(x3+1)lny∣=2dxx(x3+1)+cletdecomposeF(x)=1x(x3+1)F(x)=1x(x+1)(x2x+1)=ax+bx+1+cx+dx2x+1a=1,b=13F(x)=1x13(x+1)+cx+dx2x+1limx+xF(x)=0=113+c=23+cc=23F(1)=12=116+c+d=56+c+d1=5343+2d13+2d=12d=113=23d=13F(x)=1x13(x+1)+23x+13x2x+1F(x)dx=lnx13lnx+1132x1x2x+1dx=ln(x(3x+1)13ln(x2x+1)+clny=2ln(x(3x+1)23ln(x2x+1)+cy(x)=k×x2(x+1)23(x2x+1)23=kx2(x3+1)23

Answered by mathmax by abdo last updated on 29/Nov/20

b)  h(x)=(x^3 /(x^(2 ) +1))g(x) ⇒h^(′ ) =((3x^2 (x^2 +1)−x^3 (2x))/((x^2  +1)^2 ))g   +(x^3 /(x^2  +1))g^′  =((3x^4  +3x^2 −2x^4 )/((x^2  +1)^2 ))g +(x^3 /(x^2  +1))g^′   =((x^(4 ) +3x^2 )/((x^2  +1)^2 ))g +(x^3 /(x^2  +1))g^′      h solution of e ⇒  x(x^2 +1)(((x^4  +3x^2 )/((x^2  +1)^2 ))g +(x^3 /(x^2  +1))g^′ )−((2x^3 )/(x^2  +1))g =x^3 (x−1)e^(−x)  ⇒  ((x(x^4  +3x^2 ))/(x^2  +1))g +x^4 g^′ −((2x^3 )/(x^2  +1))g =x^3 (x−1)e^(−x)  ⇒  ((x^5  +3x^3 −2x^3 )/(x^2  +1))g  +x^4  g^′  =x^3 (x−1)^2 e^(−x)  ⇒  x^(3 )  g +x^4  g^′  =x^3 (x−1)^2 e^(−x)  ⇒g+xg^′  =(x−1)^2 e^(−x)   h→ xg^′  =−g ⇒(g^′ /g)=−(1/x) ⇒ln∣g∣=−ln∣x∣ +c ⇒g=(k/x)  mvc method →g^′  =(k^′ /x)−(k/x^2 )  and e⇒k^′ −(k/x) +(k/x)=(x−1)^2 e^(−x)  ⇒  ⇒k^′  =(x−1)^2 e^(−x)  ⇒k =∫ (x−1)^2 e^(−x)  dx  =−(x−1)^2 e^(−x) +∫ 2(x−1)e^(−x ) dx  =−(x−1)^2  e^(−x)  +2{  −(x−1)e^(−x) +∫ e^(−x)  dx}  =−(x−1)^2 e^(−x)  +2{−xe^(−x) } +c  ={−(x−1)^2 −2x}e^(−x) +c ={ −(x^2 −2x+1)−2x}e^(−x)  +c   =−(x^2  +1)e^(−x)  +c ⇒g(x)=((c−(x^2  +1)e^(−x) )/x)....

b)h(x)=x3x2+1g(x)h=3x2(x2+1)x3(2x)(x2+1)2g+x3x2+1g=3x4+3x22x4(x2+1)2g+x3x2+1g=x4+3x2(x2+1)2g+x3x2+1ghsolutionofex(x2+1)(x4+3x2(x2+1)2g+x3x2+1g)2x3x2+1g=x3(x1)exx(x4+3x2)x2+1g+x4g2x3x2+1g=x3(x1)exx5+3x32x3x2+1g+x4g=x3(x1)2exx3g+x4g=x3(x1)2exg+xg=(x1)2exhxg=ggg=1xlng∣=lnx+cg=kxmvcmethodg=kxkx2andekkx+kx=(x1)2exk=(x1)2exk=(x1)2exdx=(x1)2ex+2(x1)exdx=(x1)2ex+2{(x1)ex+exdx}=(x1)2ex+2{xex}+c={(x1)22x}ex+c={(x22x+1)2x}ex+c=(x2+1)ex+cg(x)=c(x2+1)exx....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com