Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 123998 by john_santu last updated on 30/Nov/20

 ∫_( 0) ^( ∞)  (x^2 /((1+x^2 )^2 )) dx

0x2(1+x2)2dx

Answered by liberty last updated on 30/Nov/20

 substituting x = tan q with upper limit (π/2)  and lower limit 0  ∫_( 0) ^( π/2)  ((tan^2 q .sec^2 q dq)/(sec^4 q)) = ∫_( 0 ) ^( π/2) sin^2 q dq    = ∫_( 0) ^( π/2) ((1/2)−(1/2)cos 2q )dq = [(1/2)q−(1/4)sin 2q ]_( 0) ^(π/2)    = (π/4).

substitutingx=tanqwithupperlimitπ2andlowerlimit00π/2tan2q.sec2qdqsec4q=0π/2sin2qdq=0π/2(1212cos2q)dq=[12q14sin2q]0π/2=π4.

Answered by Dwaipayan Shikari last updated on 30/Nov/20

∫_0 ^∞ (x^2 /((1+x^2 )^2 ))dx       (1/(1+x^2 ))=t⇒−((2x)/((1+x^2 )^2 ))=(dt/dx)      x=(√((1−t)/t))  =(1/2)∫_0 ^1 (√((1−t)/t)) dt  =(1/2)∫_0 ^1 t^(−(1/2)) (1−t)^(1/2) dt=(1/2)β((1/2),(3/2))  =((Γ^2 ((1/2)))/4)=(((√π).(√π))/4)=(π/4)

0x2(1+x2)2dx11+x2=t2x(1+x2)2=dtdxx=1tt=12011ttdt=1201t12(1t)12dt=12β(12,32)=Γ2(12)4=π.π4=π4

Answered by mathmax by abdo last updated on 30/Nov/20

I=∫_0 ^∞  (x^2 /((x^2 +1)^2 ))dx ⇒I =∫_0 ^∞  ((x^2 +1−1)/((x^2 +1)^2 ))dx  =∫_0 ^∞  (dx/(x^2  +1))−∫_0 ^∞  (dx/((x^2  +1)^2 ))=(π/2)−J with J=∫_0 ^∞  (dx/((x^2  +1)^2 ))  2J=∫_(−∞) ^(+∞)  (dx/((x^2  +1)^2 )) let ϕ(z)=(1/((z^2  +1)^2 )) =(1/((z−i)^2 (z+i)^2 ))  ∫_(−∞) ^(+∞)  ϕ−z)dz =2iπ Res(ϕ,i)  Res(ϕ,i)=lim_(z→i)   (1/((2−1)!)){(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)    {(z+i)^(−2) }^((1))  =lim_(z→i)    −2(z+i)^(−3)  =lim_(z→i) ((−2)/((z+i)^3 ))  =((−2)/((2i)^3 )) =((−2)/(−8i)) =(1/(4i)) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ×(1/(4i))=(π/2)=2J ⇒  J=(π/4) ⇒ I =(π/2)−(π/4)=(π/4)

I=0x2(x2+1)2dxI=0x2+11(x2+1)2dx=0dxx2+10dx(x2+1)2=π2JwithJ=0dx(x2+1)22J=+dx(x2+1)2letφ(z)=1(z2+1)2=1(zi)2(z+i)2+φz)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{(z+i)2}(1)=limzi2(z+i)3=limzi2(z+i)3=2(2i)3=28i=14i+φ(z)dz=2iπ×14i=π2=2JJ=π4I=π2π4=π4

Answered by mnjuly1970 last updated on 01/Dec/20

  ∫_0 ^( ∞) ((1+x^2 −1)/((1+x^2 )^2 ))dx=(π/2)−(π/4)=(π/4)

01+x21(1+x2)2dx=π2π4=π4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com