Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124024 by hatakekakashi1729gmailcom last updated on 30/Nov/20

Answered by Dwaipayan Shikari last updated on 30/Nov/20

(x^x )^((x^x )^((x^(x)) )...) ) =t           x^x =y  y^y^(y..)  =t⇒y^t =t⇒tlog(y)=log(t)  e^(log(t)) log(y)=log(t)  −log(t)e^(−log(t)) =−log(y)  log(t)=−W_0 (−log(y))  t=e^(−W_0 (−logy)) =e^(−W_0 (−xlogx)) =−((W_0 (−xlogx))/(xlogx))  W_0 (Φ)=Σ_(n=1) ^∞ (((−1)^(n−1) n^(n−1) )/(n!))Φ^n    ∫_0 ^1 ((W_0 (−xlogx))/(−xlogx))dx  =∫_0 ^1 Σ_(n=1) ^∞ (−1)^n n^(n−1) .(((−xlogx)^(n−1) )/(n!))dx  =Σ_(n=1) ^∞ ∫_0 ^1 (−1)^2 n^(n−1) (((xlogx)^n )/(n!))dx  =Σ_(n=1) ^∞ (n^(n−1) /(n!))∫_0 ^1 x^n log^n x dx              logx=p⇒(1/x)=(dt/dx)  =Σ_(n=1) ^∞ (n^(n−1) /(n!))∫_(−∞) ^0 e^((n+1)p) p^n dx           p(n+1)=−Λ⇒(n+1)=−(dΛ/dp)  =Σ_(n=1) ^∞ (((−1)^n n^(n−1) )/(n!n^(n+1) ))∫_0 ^∞ Λ^n e^(−Λ) dΛ  =Σ_(n=1) ^∞ (((−1)^(n+1) )/(n^2 .n!)).Γ(n+1)=Σ_(n=1) ^∞ (((−1)^(n+1) )/n^2 )=(π^2 /(12))

$$\left({x}^{{x}} \right)^{\left({x}^{{x}} \right)^{\left({x}^{\left.{x}\right)} \right)...} } ={t}\:\:\:\:\:\:\:\:\:\:\:{x}^{{x}} ={y} \\ $$$${y}^{{y}^{{y}..} } ={t}\Rightarrow{y}^{{t}} ={t}\Rightarrow{tlog}\left({y}\right)={log}\left({t}\right) \\ $$$${e}^{{log}\left({t}\right)} {log}\left({y}\right)={log}\left({t}\right) \\ $$$$−{log}\left({t}\right){e}^{−{log}\left({t}\right)} =−{log}\left({y}\right) \\ $$$${log}\left({t}\right)=−{W}_{\mathrm{0}} \left(−{log}\left({y}\right)\right) \\ $$$${t}={e}^{−{W}_{\mathrm{0}} \left(−{logy}\right)} ={e}^{−{W}_{\mathrm{0}} \left(−{xlogx}\right)} =−\frac{{W}_{\mathrm{0}} \left(−{xlogx}\right)}{{xlogx}} \\ $$$${W}_{\mathrm{0}} \left(\Phi\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {n}^{{n}−\mathrm{1}} }{{n}!}\Phi^{{n}} \: \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{W}_{\mathrm{0}} \left(−{xlogx}\right)}{−{xlogx}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} {n}^{{n}−\mathrm{1}} .\frac{\left(−{xlogx}\right)^{{n}−\mathrm{1}} }{{n}!}{dx} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)^{\mathrm{2}} {n}^{{n}−\mathrm{1}} \frac{\left({xlogx}\right)^{{n}} }{{n}!}{dx} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{{n}−\mathrm{1}} }{{n}!}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} {log}^{{n}} {x}\:{dx}\:\:\:\:\:\:\:\:\:\:\:\:\:\:{logx}={p}\Rightarrow\frac{\mathrm{1}}{{x}}=\frac{{dt}}{{dx}} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{n}^{{n}−\mathrm{1}} }{{n}!}\int_{−\infty} ^{\mathrm{0}} {e}^{\left({n}+\mathrm{1}\right){p}} {p}^{{n}} {dx}\:\:\:\:\:\:\:\:\:\:\:{p}\left({n}+\mathrm{1}\right)=−\Lambda\Rightarrow\left({n}+\mathrm{1}\right)=−\frac{{d}\Lambda}{{dp}} \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {n}^{{n}−\mathrm{1}} }{{n}!{n}^{{n}+\mathrm{1}} }\int_{\mathrm{0}} ^{\infty} \Lambda^{{n}} {e}^{−\Lambda} {d}\Lambda \\ $$$$=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}^{\mathrm{2}} .{n}!}.\Gamma\left({n}+\mathrm{1}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{{n}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$

Commented by hatakekakashi1729gmailcom last updated on 02/Dec/20

Thanks

$${Thanks} \\ $$

Commented by hatakekakashi1729gmailcom last updated on 30/Nov/20

don′t mind do you have another method

$${don}'{t}\:{mind}\:{do}\:{you}\:{have}\:{another}\:{method} \\ $$

Commented by Dwaipayan Shikari last updated on 30/Nov/20

W_0 (x)  is Lambert W function  W_0 (x)=Σ_(n≥1) ^∞ (((−n)^(n−1) )/(n!))x^n

$${W}_{\mathrm{0}} \left({x}\right)\:\:{is}\:{Lambert}\:{W}\:{function} \\ $$$${W}_{\mathrm{0}} \left({x}\right)=\underset{{n}\geqslant\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−{n}\right)^{{n}−\mathrm{1}} }{{n}!}{x}^{{n}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com