Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 124048 by ajfour last updated on 30/Nov/20

Commented by ajfour last updated on 30/Nov/20

Find side s of equilateral △ in  terms of λ. Radius is unity.

$${Find}\:{side}\:{s}\:{of}\:{equilateral}\:\bigtriangleup\:{in} \\ $$$${terms}\:{of}\:\lambda.\:{Radius}\:{is}\:{unity}. \\ $$

Answered by mr W last updated on 30/Nov/20

Commented by ajfour last updated on 30/Nov/20

let  B(h,−k)            k = 1−λ      h= (√(λ(2−λ)))  eq. of BC  y=1−(((2−λ)x)/( (√(λ(2−λ)))) = 1−(((1+k)x)/h)  let   D[t, 1−(((1+k)t)/h)]  let  F   be midpoint of AD  F [(t/2), ((1−k)/2)−(((1+k)t)/(2h))]  AF = (t/2)+i[((1+k)/2)−(((1+k)t)/(2h))]  FE=(((1+k)t)/(2h))−(((1+k))/2)+((it)/2)  E[(((1+2k)t)/(2h))−(((1+k))/2), (t/2)+((1−k)/2)−(((1+k)t)/(2h))]  E(−cos θ, sin θ)  ⇒   {(((1+2k)t)/(2h))−(((1+k))/2)}^2 +{(t/2)+((1−k)/2)−(((1+k)t)/(2h))}^2 =1  ⇒  {(1+2k)t−h(1+k)}^2 +      {h(1−k)−(1+k−h)t}^2  = 1  ⇒  {(1+2k)^2 −(1+k−h)^2 }t^2   +2{h(1−k)(1+k−h)−h(1+k)(1+2k)}t  +h^2 [(1+k)^2 −(1−k)^2 ]−1=0  ⇒  (k^2 −h^2 +4k+2h+2hk)t^2   +2(h+hk−h^2 −hk−hk^2 +h^2 k            −h−2hk−hk−2hk^2 )t  +4kh^2 −1=0  ⇒  (k^2 +2hk−h^2 +4k+2h)t^2   −2(hk^2 −h^2 k+3hk+h^2 )t+4h^2 k−1  =0  ⇒  t=((hk(k−h)+h(3k+h))/(k(k+4)+h(2k−h+2)))       −(√([((hk(k−h)+h(3k+h))/(k(k+4)+h(2k−h+2)))]^2 −(((4h^2 k−1))/(k(k+4)+h(2k−h+2)))))           s = (√(t^2 +(1+k)^2 (h−t)^2 ))  example:  λ=0.6    k=0.4 ,  h=(√(0.6×1.4)) = (√(0.84))  t ≈ 0.11039604(✓) , 0.89381445(×)    s ≈ 1.13395334

$${let}\:\:{B}\left({h},−{k}\right)\:\:\:\:\:\:\:\:\: \\ $$$$\:{k}\:=\:\mathrm{1}−\lambda\:\:\:\: \\ $$$${h}=\:\sqrt{\lambda\left(\mathrm{2}−\lambda\right)} \\ $$$${eq}.\:{of}\:{BC} \\ $$$${y}=\mathrm{1}−\frac{\left(\mathrm{2}−\lambda\right){x}}{\:\sqrt{\lambda\left(\mathrm{2}−\lambda\right.}}\:=\:\mathrm{1}−\frac{\left(\mathrm{1}+{k}\right){x}}{{h}} \\ $$$${let}\:\:\:{D}\left[{t},\:\mathrm{1}−\frac{\left(\mathrm{1}+{k}\right){t}}{{h}}\right] \\ $$$${let}\:\:{F}\:\:\:{be}\:{midpoint}\:{of}\:{AD} \\ $$$${F}\:\left[\frac{{t}}{\mathrm{2}},\:\frac{\mathrm{1}−{k}}{\mathrm{2}}−\frac{\left(\mathrm{1}+{k}\right){t}}{\mathrm{2}{h}}\right] \\ $$$${AF}\:=\:\frac{{t}}{\mathrm{2}}+{i}\left[\frac{\mathrm{1}+{k}}{\mathrm{2}}−\frac{\left(\mathrm{1}+{k}\right){t}}{\mathrm{2}{h}}\right] \\ $$$${FE}=\frac{\left(\mathrm{1}+{k}\right){t}}{\mathrm{2}{h}}−\frac{\left(\mathrm{1}+{k}\right)}{\mathrm{2}}+\frac{{it}}{\mathrm{2}} \\ $$$${E}\left[\frac{\left(\mathrm{1}+\mathrm{2}{k}\right){t}}{\mathrm{2}{h}}−\frac{\left(\mathrm{1}+{k}\right)}{\mathrm{2}},\:\frac{{t}}{\mathrm{2}}+\frac{\mathrm{1}−{k}}{\mathrm{2}}−\frac{\left(\mathrm{1}+{k}\right){t}}{\mathrm{2}{h}}\right] \\ $$$${E}\left(−\mathrm{cos}\:\theta,\:\mathrm{sin}\:\theta\right) \\ $$$$\Rightarrow\: \\ $$$$\left\{\frac{\left(\mathrm{1}+\mathrm{2}{k}\right){t}}{\mathrm{2}{h}}−\frac{\left(\mathrm{1}+{k}\right)}{\mathrm{2}}\right\}^{\mathrm{2}} +\left\{\frac{{t}}{\mathrm{2}}+\frac{\mathrm{1}−{k}}{\mathrm{2}}−\frac{\left(\mathrm{1}+{k}\right){t}}{\mathrm{2}{h}}\right\}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\left\{\left(\mathrm{1}+\mathrm{2}{k}\right){t}−{h}\left(\mathrm{1}+{k}\right)\right\}^{\mathrm{2}} + \\ $$$$\:\:\:\:\left\{{h}\left(\mathrm{1}−{k}\right)−\left(\mathrm{1}+{k}−{h}\right){t}\right\}^{\mathrm{2}} \:=\:\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\left\{\left(\mathrm{1}+\mathrm{2}{k}\right)^{\mathrm{2}} −\left(\mathrm{1}+{k}−{h}\right)^{\mathrm{2}} \right\}{t}^{\mathrm{2}} \\ $$$$+\mathrm{2}\left\{{h}\left(\mathrm{1}−{k}\right)\left(\mathrm{1}+{k}−{h}\right)−{h}\left(\mathrm{1}+{k}\right)\left(\mathrm{1}+\mathrm{2}{k}\right)\right\}{t} \\ $$$$+{h}^{\mathrm{2}} \left[\left(\mathrm{1}+{k}\right)^{\mathrm{2}} −\left(\mathrm{1}−{k}\right)^{\mathrm{2}} \right]−\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\left({k}^{\mathrm{2}} −{h}^{\mathrm{2}} +\mathrm{4}{k}+\mathrm{2}{h}+\mathrm{2}{hk}\right){t}^{\mathrm{2}} \\ $$$$+\mathrm{2}\left({h}+{hk}−{h}^{\mathrm{2}} −{hk}−{hk}^{\mathrm{2}} +{h}^{\mathrm{2}} {k}\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:−{h}−\mathrm{2}{hk}−{hk}−\mathrm{2}{hk}^{\mathrm{2}} \right){t} \\ $$$$+\mathrm{4}{kh}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\left({k}^{\mathrm{2}} +\mathrm{2}{hk}−{h}^{\mathrm{2}} +\mathrm{4}{k}+\mathrm{2}{h}\right){t}^{\mathrm{2}} \\ $$$$−\mathrm{2}\left({hk}^{\mathrm{2}} −{h}^{\mathrm{2}} {k}+\mathrm{3}{hk}+{h}^{\mathrm{2}} \right){t}+\mathrm{4}{h}^{\mathrm{2}} {k}−\mathrm{1} \\ $$$$=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${t}=\frac{{hk}\left({k}−{h}\right)+{h}\left(\mathrm{3}{k}+{h}\right)}{{k}\left({k}+\mathrm{4}\right)+{h}\left(\mathrm{2}{k}−{h}+\mathrm{2}\right)} \\ $$$$ \\ $$$$\:\:\:−\sqrt{\left[\frac{{hk}\left({k}−{h}\right)+{h}\left(\mathrm{3}{k}+{h}\right)}{{k}\left({k}+\mathrm{4}\right)+{h}\left(\mathrm{2}{k}−{h}+\mathrm{2}\right)}\right]^{\mathrm{2}} −\frac{\left(\mathrm{4}{h}^{\mathrm{2}} {k}−\mathrm{1}\right)}{{k}\left({k}+\mathrm{4}\right)+{h}\left(\mathrm{2}{k}−{h}+\mathrm{2}\right)}} \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\boldsymbol{{s}}\:=\:\sqrt{\boldsymbol{{t}}^{\mathrm{2}} +\left(\mathrm{1}+\boldsymbol{{k}}\right)^{\mathrm{2}} \left(\boldsymbol{{h}}−\boldsymbol{{t}}\right)^{\mathrm{2}} } \\ $$$${example}:\:\:\lambda=\mathrm{0}.\mathrm{6}\:\: \\ $$$${k}=\mathrm{0}.\mathrm{4}\:,\:\:{h}=\sqrt{\mathrm{0}.\mathrm{6}×\mathrm{1}.\mathrm{4}}\:=\:\sqrt{\mathrm{0}.\mathrm{84}} \\ $$$${t}\:\approx\:\mathrm{0}.\mathrm{11039604}\left(\checkmark\right)\:,\:\mathrm{0}.\mathrm{89381445}\left(×\right) \\ $$$$\:\:\boldsymbol{{s}}\:\approx\:\mathrm{1}.\mathrm{13395334}\: \\ $$$$ \\ $$

Commented by ajfour last updated on 01/Dec/20

waiting for Your solution, mrW  Sir..

$${waiting}\:{for}\:{Your}\:{solution},\:{mrW} \\ $$$${Sir}.. \\ $$

Commented by mr W last updated on 01/Dec/20

i have no better way for solving.  i guess solution exists only for  special values of λ.

$${i}\:{have}\:{no}\:{better}\:{way}\:{for}\:{solving}. \\ $$$${i}\:{guess}\:{solution}\:{exists}\:{only}\:{for} \\ $$$${special}\:{values}\:{of}\:\lambda. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com