Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 124170 by Pengu last updated on 01/Dec/20

  I am learning linear algebra and have a  qustion in regards to nullspace.     So, Ax=0.  If A= [(1,1),(0,0) ], this is simply solved for  x= [(x_1 ),(x_2 ) ]  by:   [(1,1,0),(0,0,0) ]→x= [((−1)),(1) ]c, ∀c∈R  Since this is for all x∈R^2 , the null space  falls on a line (in this case).     My question is, in higher dimensions,  can the null space be any dimension up  to the dimension n? So, in R^4 , can the  null space be a point, line, plane, or volume?  Furthermore, can you have multiple variations  of planes, points, etc. that make up the null space?     Thanks!

$$ \\ $$$$\mathrm{I}\:\mathrm{am}\:\mathrm{learning}\:\mathrm{linear}\:\mathrm{algebra}\:\mathrm{and}\:\mathrm{have}\:\mathrm{a} \\ $$$$\mathrm{qustion}\:\mathrm{in}\:\mathrm{regards}\:\mathrm{to}\:\mathrm{nullspace}. \\ $$$$\: \\ $$$$\mathrm{So},\:\boldsymbol{{Ax}}=\mathrm{0}. \\ $$$$\mathrm{If}\:\boldsymbol{{A}}=\begin{bmatrix}{\mathrm{1}}&{\mathrm{1}}\\{\mathrm{0}}&{\mathrm{0}}\end{bmatrix},\:\mathrm{this}\:\mathrm{is}\:\mathrm{simply}\:\mathrm{solved}\:\mathrm{for} \\ $$$$\boldsymbol{{x}}=\begin{bmatrix}{{x}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} }\end{bmatrix} \\ $$$$\mathrm{by}: \\ $$$$\begin{bmatrix}{\mathrm{1}}&{\mathrm{1}}&{\mathrm{0}}\\{\mathrm{0}}&{\mathrm{0}}&{\mathrm{0}}\end{bmatrix}\rightarrow\boldsymbol{{x}}=\begin{bmatrix}{−\mathrm{1}}\\{\mathrm{1}}\end{bmatrix}{c},\:\forall{c}\in\mathbb{R} \\ $$$$\mathrm{Since}\:\mathrm{this}\:\mathrm{is}\:\mathrm{for}\:\mathrm{all}\:\boldsymbol{{x}}\in\mathbb{R}^{\mathrm{2}} ,\:\mathrm{the}\:\mathrm{null}\:\mathrm{space} \\ $$$$\mathrm{falls}\:\mathrm{on}\:\mathrm{a}\:\mathrm{line}\:\left(\mathrm{in}\:\mathrm{this}\:\mathrm{case}\right). \\ $$$$\: \\ $$$$\mathrm{My}\:\mathrm{question}\:\mathrm{is},\:\mathrm{in}\:\mathrm{higher}\:\mathrm{dimensions}, \\ $$$$\mathrm{can}\:\mathrm{the}\:\mathrm{null}\:\mathrm{space}\:\mathrm{be}\:\mathrm{any}\:\mathrm{dimension}\:\mathrm{up} \\ $$$$\mathrm{to}\:\mathrm{the}\:\mathrm{dimension}\:{n}?\:\mathrm{So},\:\mathrm{in}\:\mathbb{R}^{\mathrm{4}} ,\:\mathrm{can}\:\mathrm{the} \\ $$$$\mathrm{null}\:\mathrm{space}\:\mathrm{be}\:\mathrm{a}\:\mathrm{point},\:\mathrm{line},\:\mathrm{plane},\:\mathrm{or}\:\mathrm{volume}? \\ $$$$\mathrm{Furthermore},\:\mathrm{can}\:\mathrm{you}\:\mathrm{have}\:{multiple}\:\mathrm{variations} \\ $$$$\mathrm{of}\:\mathrm{planes},\:\mathrm{points},\:\mathrm{etc}.\:\mathrm{that}\:\mathrm{make}\:\mathrm{up}\:\mathrm{the}\:\mathrm{null}\:\mathrm{space}? \\ $$$$\: \\ $$$$\mathrm{Thanks}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com