Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 124178 by Dwaipayan Shikari last updated on 01/Dec/20

∫_0 ^(π/2) (1/( (√(cos^4 x+sin^4 x))))dx

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}}{\:\sqrt{{cos}^{\mathrm{4}} {x}+{sin}^{\mathrm{4}} {x}}}{dx} \\ $$

Commented by Dwaipayan Shikari last updated on 01/Dec/20

I have found ((Γ^2 ((1/4)))/(4(√π)))

$${I}\:{have}\:{found}\:\frac{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}\sqrt{\pi}} \\ $$

Commented by MJS_new last updated on 01/Dec/20

me too

$$\mathrm{me}\:\mathrm{too} \\ $$

Commented by Dwaipayan Shikari last updated on 01/Dec/20

https://brilliant.org/problems/another-apple-integral try this sir

Commented by MJS_new last updated on 01/Dec/20

p, q >0  ∫_0 ^(π/2) (dx/( (√(pcos^4  x +qsin^4  x))))=       [t=(q^(1/4) /p^(1/4) )tan x → dx=(p^(1/4) /q^(1/4) )cos^2  x dt]  =(1/((pq)^(1/4) ))∫_0 ^(+∞) (dt/( (√(t^4 +1))))  and from here it′s easy

$${p},\:{q}\:>\mathrm{0} \\ $$$$\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{{dx}}{\:\sqrt{{p}\mathrm{cos}^{\mathrm{4}} \:{x}\:+{q}\mathrm{sin}^{\mathrm{4}} \:{x}}}= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{q}^{\mathrm{1}/\mathrm{4}} }{{p}^{\mathrm{1}/\mathrm{4}} }\mathrm{tan}\:{x}\:\rightarrow\:{dx}=\frac{{p}^{\mathrm{1}/\mathrm{4}} }{{q}^{\mathrm{1}/\mathrm{4}} }\mathrm{cos}^{\mathrm{2}} \:{x}\:{dt}\right] \\ $$$$=\frac{\mathrm{1}}{\left({pq}\right)^{\mathrm{1}/\mathrm{4}} }\underset{\mathrm{0}} {\overset{+\infty} {\int}}\frac{{dt}}{\:\sqrt{{t}^{\mathrm{4}} +\mathrm{1}}} \\ $$$$\mathrm{and}\:\mathrm{from}\:\mathrm{here}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy} \\ $$

Commented by Dwaipayan Shikari last updated on 01/Dec/20

Do you have Brilliant app , sir?

$${Do}\:{you}\:{have}\:{Brilliant}\:{app}\:,\:{sir}? \\ $$

Commented by MJS_new last updated on 01/Dec/20

no

$$\mathrm{no} \\ $$

Answered by mnjuly1970 last updated on 01/Dec/20

  I=∫^(π/2) _0 ((1+tan^2 (x))/( (√(1+tan^4 (x)))))dx       =^(tan(x)=t) ∫_0 ^∞ (dt/( (√(1+t^4 ))))       =^(t^4 =y) (1/4)∫_0 ^( ∞) (y^(−(3/4)) /((1+y)^(1/2) ))dy       =(1/4)β((1/4),(1/4))=(1/4) ((Γ^2 ((1/4)))/(Γ((1/2))))     =(1/4) ∗((Γ^2 ((1/4)))/( (√π)))  ✓

$$\:\:{I}=\underset{\mathrm{0}} {\int}^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}+{tan}^{\mathrm{2}} \left({x}\right)}{\:\sqrt{\mathrm{1}+{tan}^{\mathrm{4}} \left({x}\right)}}{dx} \\ $$$$\:\:\:\:\:\overset{{tan}\left({x}\right)={t}} {=}\int_{\mathrm{0}} ^{\infty} \frac{{dt}}{\:\sqrt{\mathrm{1}+{t}^{\mathrm{4}} }} \\ $$$$\:\:\:\:\:\overset{{t}^{\mathrm{4}} ={y}} {=}\frac{\mathrm{1}}{\mathrm{4}}\int_{\mathrm{0}} ^{\:\infty} \frac{{y}^{−\frac{\mathrm{3}}{\mathrm{4}}} }{\left(\mathrm{1}+{y}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{dy} \\ $$$$\:\:\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\beta\left(\frac{\mathrm{1}}{\mathrm{4}},\frac{\mathrm{1}}{\mathrm{4}}\right)=\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{4}}\:\ast\frac{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\:\sqrt{\pi}}\:\:\checkmark \\ $$$$\:\:\:\:\: \\ $$

Commented by Dwaipayan Shikari last updated on 01/Dec/20

Thanking for confirmation :)

$$\left.{Thanking}\:{for}\:{confirmation}\::\right) \\ $$

Commented by mnjuly1970 last updated on 01/Dec/20

thank you so much sir   Dwaipayan ...

$${thank}\:{you}\:{so}\:{much}\:{sir}\: \\ $$$${Dwaipayan}\:... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com