Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124201 by mnjuly1970 last updated on 01/Dec/20

              :::  nice  calculus :::       please  prove :::      Ω = ∫_0 ^( ∞) (x^(1/2) /(x^2 +2x+5))dx=(π/( (√ϕ)))       where  ϕ  is Golden ratio...

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\::::\:\:{nice}\:\:{calculus}\:::: \\ $$$$\:\:\:\:\:{please}\:\:{prove}\:::: \\ $$$$\:\:\:\:\Omega\:=\:\int_{\mathrm{0}} ^{\:\infty} \frac{{x}^{\frac{\mathrm{1}}{\mathrm{2}}} }{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}{dx}=\frac{\pi}{\:\sqrt{\varphi}} \\ $$$$\:\:\:\:\:{where}\:\:\varphi\:\:{is}\:{Golden}\:{ratio}... \\ $$

Answered by ajfour last updated on 02/Dec/20

I=∫(((√x)dx)/((x+1)^2 +(2ϕ−1)^2 ))  let  (√x)=t ⇒  (√x)dx=2t^2 dt  I=∫((2t^2 dt)/((t^2 +1)^2 +(2ϕ−1)^2 ))  let  t=(1/z)  ⇒  dt=−(dz/z^2 )  I=∫((2dz)/((1+z^2 )^2 +(2ϕ−1)^2 z^4 ))    = ∫((2dz)/(6z^4 +2z^2 +1))  = (1/3)∫(dz/((z^2 +(1/6))^2 +(((√5)/6))^2 ))  ....

$${I}=\int\frac{\sqrt{{x}}{dx}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{2}\varphi−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${let}\:\:\sqrt{{x}}={t}\:\Rightarrow\:\:\sqrt{{x}}{dx}=\mathrm{2}{t}^{\mathrm{2}} {dt} \\ $$$${I}=\int\frac{\mathrm{2}{t}^{\mathrm{2}} {dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{2}\varphi−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${let}\:\:{t}=\frac{\mathrm{1}}{{z}}\:\:\Rightarrow\:\:{dt}=−\frac{{dz}}{{z}^{\mathrm{2}} } \\ $$$${I}=\int\frac{\mathrm{2}{dz}}{\left(\mathrm{1}+{z}^{\mathrm{2}} \right)^{\mathrm{2}} +\left(\mathrm{2}\varphi−\mathrm{1}\right)^{\mathrm{2}} {z}^{\mathrm{4}} } \\ $$$$\:\:=\:\int\frac{\mathrm{2}{dz}}{\mathrm{6}{z}^{\mathrm{4}} +\mathrm{2}{z}^{\mathrm{2}} +\mathrm{1}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{3}}\int\frac{{dz}}{\left({z}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{6}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{5}}}{\mathrm{6}}\right)^{\mathrm{2}} } \\ $$$$.... \\ $$

Commented by mindispower last updated on 02/Dec/20

sir ajfour your methode  worcks since 6 z^4  +2z^2 +1 can bee factorised  in polynoms of degree 2  and∫(dx/(x^2 +ax+b)) can bee solved

$${sir}\:{ajfour}\:{your}\:{methode} \\ $$$${worcks}\:{since}\:\mathrm{6}\:{z}^{\mathrm{4}} \:+\mathrm{2}{z}^{\mathrm{2}} +\mathrm{1}\:{can}\:{bee}\:{factorised} \\ $$$${in}\:{polynoms}\:{of}\:{degree}\:\mathrm{2} \\ $$$${and}\int\frac{{dx}}{{x}^{\mathrm{2}} +{ax}+{b}}\:{can}\:{bee}\:{solved} \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 03/Dec/20

thanking  for your effort  sir ajfor..

$${thanking}\:\:{for}\:{your}\:{effort} \\ $$$${sir}\:{ajfor}.. \\ $$

Commented by mnjuly1970 last updated on 03/Dec/20

Answered by mindispower last updated on 02/Dec/20

Δ=∫_(−∞) ^∞ (z^(1/2) /(z^2 +2z+5))dz=∫_(−∞) ^0 (z^(1/2) /(z^2 +2z+5))dz+Ω  =i∫_0 ^∞ (z^(1/2) /(z^2 −2z+5))dz+Ω=Ω+it,Ω,t∈R  Δ=2iπRes((z^(1/2) /(z^2 +2z+5)),z=−1+2i)  .=2iπ(((−1+2i)^(1/2) )/(2(−1+2i)+2))=(π/2)(−1+2i)^(1/2)   (−1+2i)^(1/2) =x+iy  ⇒xy=1,x^2 +y^2 =(√5),x^2 −y^2 =−1  x=((((√5)−1)/2))^(1/2) ,y=(2/( (√5)−1))=((((√5)+1)/2))^(1/2)   x=(√(ϕ−1)),y=(√ϕ)  Δ=(π/2)(√(ϕ−1))+(π/2)i(√ϕ)  Ω=Re(Δ)=(π/2)(√(ϕ−1))  ϕ^2 =ϕ+1⇒ϕ(ϕ−1)=1  ⇒(√(ϕ−1))=(1/( (√ϕ)))  Ω=(π/2)(√(ϕ−1))=(π/(2(√ϕ)))

$$\Delta=\int_{−\infty} ^{\infty} \frac{{z}^{\frac{\mathrm{1}}{\mathrm{2}}} }{{z}^{\mathrm{2}} +\mathrm{2}{z}+\mathrm{5}}{dz}=\int_{−\infty} ^{\mathrm{0}} \frac{{z}^{\frac{\mathrm{1}}{\mathrm{2}}} }{{z}^{\mathrm{2}} +\mathrm{2}{z}+\mathrm{5}}{dz}+\Omega \\ $$$$={i}\int_{\mathrm{0}} ^{\infty} \frac{{z}^{\frac{\mathrm{1}}{\mathrm{2}}} }{{z}^{\mathrm{2}} −\mathrm{2}{z}+\mathrm{5}}{dz}+\Omega=\Omega+{it},\Omega,{t}\in\mathbb{R} \\ $$$$\Delta=\mathrm{2}{i}\pi{Res}\left(\frac{{z}^{\frac{\mathrm{1}}{\mathrm{2}}} }{{z}^{\mathrm{2}} +\mathrm{2}{z}+\mathrm{5}},{z}=−\mathrm{1}+\mathrm{2}{i}\right) \\ $$$$.=\mathrm{2}{i}\pi\frac{\left(−\mathrm{1}+\mathrm{2}{i}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{2}\left(−\mathrm{1}+\mathrm{2}{i}\right)+\mathrm{2}}=\frac{\pi}{\mathrm{2}}\left(−\mathrm{1}+\mathrm{2}{i}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\left(−\mathrm{1}+\mathrm{2}{i}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} ={x}+{iy} \\ $$$$\Rightarrow{xy}=\mathrm{1},{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\sqrt{\mathrm{5}},{x}^{\mathrm{2}} −{y}^{\mathrm{2}} =−\mathrm{1} \\ $$$${x}=\left(\frac{\sqrt{\mathrm{5}}−\mathrm{1}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} ,{y}=\frac{\mathrm{2}}{\:\sqrt{\mathrm{5}}−\mathrm{1}}=\left(\frac{\sqrt{\mathrm{5}}+\mathrm{1}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${x}=\sqrt{\varphi−\mathrm{1}},{y}=\sqrt{\varphi} \\ $$$$\Delta=\frac{\pi}{\mathrm{2}}\sqrt{\varphi−\mathrm{1}}+\frac{\pi}{\mathrm{2}}{i}\sqrt{\varphi} \\ $$$$\Omega={Re}\left(\Delta\right)=\frac{\pi}{\mathrm{2}}\sqrt{\varphi−\mathrm{1}} \\ $$$$\varphi^{\mathrm{2}} =\varphi+\mathrm{1}\Rightarrow\varphi\left(\varphi−\mathrm{1}\right)=\mathrm{1} \\ $$$$\Rightarrow\sqrt{\varphi−\mathrm{1}}=\frac{\mathrm{1}}{\:\sqrt{\varphi}} \\ $$$$\Omega=\frac{\pi}{\mathrm{2}}\sqrt{\varphi−\mathrm{1}}=\frac{\pi}{\mathrm{2}\sqrt{\varphi}} \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 02/Dec/20

excellent

$${excellent} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com