Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 124247 by ZiYangLee last updated on 02/Dec/20

Commented by ZiYangLee last updated on 02/Dec/20

8 and 9, help sir...

$$\mathrm{8}\:\mathrm{and}\:\mathrm{9},\:\mathrm{help}\:\mathrm{sir}... \\ $$

Answered by bramlexs22 last updated on 02/Dec/20

(8)•(x^2 +(1/x))^n = Σ_(r=0) ^n  ((n),(r) ) (x^(2(n−r)) )(x^(−r) )  T_4  =  ((n),(3) ) x^(2n−6) .x^(−3)  = ((n.(n−1).(n−2))/6) x^(9−n)   T_(13) = ((n),((12)) ) x^(2n−24) .x^(−12)  = ((n!)/(12!(n−12)!)).x^(36−n)   coefficient of 4^(th)  and 13^(th)  are equal  then ((n!)/(3!(n−3)!)) = ((n!)/(12!(n−12)!))  ⇔ 3!(n−3)(n−4)...(n−12)!=12.11...3!(n−12)!  we get n=15. recall formula    ((n),(r) ) =  (((   n)),((n−r)) )  we want to find the term indenpendent  of x in the expansion (x^2 +(1/x))^(15)   (x^2 +(1/x))^(15) =Σ_(r=0) ^(15)  (((15)),((  r)) ) x^(30−2r) .(x^(−r) )  the term independent of x we get if  x^(30−3r)  = x^0  ; r = 10. Thus the term  independent of x =  (((15)),((10)) ) = ((15.14.13.12.11)/(5.4.3.2.1))=3003  ((15×14×13×12×11)/(5×4×3×2×1))  3003.0

$$\left(\mathrm{8}\right)\bullet\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}}\right)^{{n}} =\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}\:\left({x}^{\mathrm{2}\left({n}−{r}\right)} \right)\left({x}^{−{r}} \right) \\ $$$${T}_{\mathrm{4}} \:=\:\begin{pmatrix}{{n}}\\{\mathrm{3}}\end{pmatrix}\:{x}^{\mathrm{2}{n}−\mathrm{6}} .{x}^{−\mathrm{3}} \:=\:\frac{{n}.\left({n}−\mathrm{1}\right).\left({n}−\mathrm{2}\right)}{\mathrm{6}}\:{x}^{\mathrm{9}−{n}} \\ $$$${T}_{\mathrm{13}} =\begin{pmatrix}{{n}}\\{\mathrm{12}}\end{pmatrix}\:{x}^{\mathrm{2}{n}−\mathrm{24}} .{x}^{−\mathrm{12}} \:=\:\frac{{n}!}{\mathrm{12}!\left({n}−\mathrm{12}\right)!}.{x}^{\mathrm{36}−{n}} \\ $$$${coefficient}\:{of}\:\mathrm{4}^{{th}} \:{and}\:\mathrm{13}^{{th}} \:{are}\:{equal} \\ $$$${then}\:\frac{{n}!}{\mathrm{3}!\left({n}−\mathrm{3}\right)!}\:=\:\frac{{n}!}{\mathrm{12}!\left({n}−\mathrm{12}\right)!} \\ $$$$\Leftrightarrow\:\mathrm{3}!\left({n}−\mathrm{3}\right)\left({n}−\mathrm{4}\right)...\left({n}−\mathrm{12}\right)!=\mathrm{12}.\mathrm{11}...\mathrm{3}!\left({n}−\mathrm{12}\right)! \\ $$$${we}\:{get}\:{n}=\mathrm{15}.\:{recall}\:{formula}\: \\ $$$$\begin{pmatrix}{{n}}\\{{r}}\end{pmatrix}\:=\:\begin{pmatrix}{\:\:\:{n}}\\{{n}−{r}}\end{pmatrix} \\ $$$${we}\:{want}\:{to}\:{find}\:{the}\:{term}\:{indenpendent} \\ $$$${of}\:{x}\:{in}\:{the}\:{expansion}\:\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}}\right)^{\mathrm{15}} \\ $$$$\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}}\right)^{\mathrm{15}} =\underset{{r}=\mathrm{0}} {\overset{\mathrm{15}} {\sum}}\begin{pmatrix}{\mathrm{15}}\\{\:\:{r}}\end{pmatrix}\:{x}^{\mathrm{30}−\mathrm{2}{r}} .\left({x}^{−{r}} \right) \\ $$$${the}\:{term}\:{independent}\:{of}\:{x}\:{we}\:{get}\:{if} \\ $$$${x}^{\mathrm{30}−\mathrm{3}{r}} \:=\:{x}^{\mathrm{0}} \:;\:{r}\:=\:\mathrm{10}.\:{Thus}\:{the}\:{term} \\ $$$${independent}\:{of}\:{x}\:=\:\begin{pmatrix}{\mathrm{15}}\\{\mathrm{10}}\end{pmatrix}\:=\:\frac{\mathrm{15}.\mathrm{14}.\mathrm{13}.\mathrm{12}.\mathrm{11}}{\mathrm{5}.\mathrm{4}.\mathrm{3}.\mathrm{2}.\mathrm{1}}=\mathrm{3003} \\ $$$$\frac{\mathrm{15}×\mathrm{14}×\mathrm{13}×\mathrm{12}×\mathrm{11}}{\mathrm{5}×\mathrm{4}×\mathrm{3}×\mathrm{2}×\mathrm{1}} \\ $$$$\mathrm{3003}.\mathrm{0} \\ $$$$ \\ $$

Commented by ZiYangLee last updated on 02/Dec/20

wow thanks!

$$\mathrm{wow}\:\mathrm{thanks}! \\ $$

Answered by bramlexs22 last updated on 02/Dec/20

(9)•• (1+x)^(18) =Σ_(r=0) ^(18)  (((18)),((  r)) ) x^(18−r)   coefficient of the (2r+4)^(th)  =  (((    18)),((2r+3)) ) = ((18!)/((2r+3)!(15−2r)!))  coefficient of (r−2)^(th) = (((  18)),((r−3)) ) =((18!)/((r−3)!(21−r)!))  the (2r+3)!(15−2r)!=(r−3)!(21−r)!  we get r = 6.

$$\left(\mathrm{9}\right)\bullet\bullet\:\left(\mathrm{1}+{x}\right)^{\mathrm{18}} =\underset{{r}=\mathrm{0}} {\overset{\mathrm{18}} {\sum}}\begin{pmatrix}{\mathrm{18}}\\{\:\:{r}}\end{pmatrix}\:{x}^{\mathrm{18}−{r}} \\ $$$${coefficient}\:{of}\:{the}\:\left(\mathrm{2}{r}+\mathrm{4}\right)^{{th}} \:=\:\begin{pmatrix}{\:\:\:\:\mathrm{18}}\\{\mathrm{2}{r}+\mathrm{3}}\end{pmatrix}\:=\:\frac{\mathrm{18}!}{\left(\mathrm{2}{r}+\mathrm{3}\right)!\left(\mathrm{15}−\mathrm{2}{r}\right)!} \\ $$$${coefficient}\:{of}\:\left({r}−\mathrm{2}\right)^{{th}} =\begin{pmatrix}{\:\:\mathrm{18}}\\{{r}−\mathrm{3}}\end{pmatrix}\:=\frac{\mathrm{18}!}{\left({r}−\mathrm{3}\right)!\left(\mathrm{21}−{r}\right)!} \\ $$$${the}\:\left(\mathrm{2}{r}+\mathrm{3}\right)!\left(\mathrm{15}−\mathrm{2}{r}\right)!=\left({r}−\mathrm{3}\right)!\left(\mathrm{21}−{r}\right)! \\ $$$${we}\:{get}\:{r}\:=\:\mathrm{6}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com