Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 124355 by Eric002 last updated on 02/Dec/20

find the limit   lim_(n→∞) (sin((1/n^2 ))+sin((2/n^2 ))+......+sin((n/n^2 )))

$${find}\:{the}\:{limit}\: \\ $$$$\underset{{n}\rightarrow\infty} {{lim}}\left({sin}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)+{sin}\left(\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right)+......+{sin}\left(\frac{{n}}{{n}^{\mathrm{2}} }\right)\right) \\ $$

Answered by Dwaipayan Shikari last updated on 02/Dec/20

lim_(n→∞) sin((1/n^2 ))+sin((2/n^2 ))+...  =((1+2+3+4+5+6+..+n)/n^2 )=((n^2 +n)/(2n^2 ))=(1/2)   (As sin((1/n^2 ))→((1/n^2 )))

$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}{sin}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)+{sin}\left(\frac{\mathrm{2}}{{n}^{\mathrm{2}} }\right)+... \\ $$$$=\frac{\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+\mathrm{5}+\mathrm{6}+..+{n}}{{n}^{\mathrm{2}} }=\frac{{n}^{\mathrm{2}} +{n}}{\mathrm{2}{n}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}\:\:\:\left({As}\:{sin}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\rightarrow\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\right) \\ $$

Answered by mathmax by abdo last updated on 02/Dec/20

we have x−(x^3 /6)≤sinx≤x ⇒Σ_(k=1) ^n  (k/n^2 )−(1/6)Σ_(k=1) ^n  (k^3 /n^6 )≤Σ_(k=1) ^n  sin((k/n^2 ))≤Σ_(k=1) ^n  (k/n^2 ) ⇒  ((n(n+1))/(2n^2 ))−(1/(6n^3 ))(((n(n+1))/2))^2  ≤ S_n ≤((n(n+1))/(2n^2 ))   we passe to[limit (n→∞)  lim_(n→+∞) S_n =(1/2)

$$\mathrm{we}\:\mathrm{have}\:\mathrm{x}−\frac{\mathrm{x}^{\mathrm{3}} }{\mathrm{6}}\leqslant\mathrm{sinx}\leqslant\mathrm{x}\:\Rightarrow\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{k}}{\mathrm{n}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{6}}\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{k}^{\mathrm{3}} }{\mathrm{n}^{\mathrm{6}} }\leqslant\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\mathrm{sin}\left(\frac{\mathrm{k}}{\mathrm{n}^{\mathrm{2}} }\right)\leqslant\sum_{\mathrm{k}=\mathrm{1}} ^{\mathrm{n}} \:\frac{\mathrm{k}}{\mathrm{n}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2n}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{6n}^{\mathrm{3}} }\left(\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2}}\right)^{\mathrm{2}} \:\leqslant\:\mathrm{S}_{\mathrm{n}} \leqslant\frac{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}{\mathrm{2n}^{\mathrm{2}} }\:\:\:\mathrm{we}\:\mathrm{passe}\:\mathrm{to}\left[\mathrm{limit}\:\left(\mathrm{n}\rightarrow\infty\right)\right. \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{S}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com