Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 124415 by snipers237 last updated on 03/Dec/20

Let a>0,   A={f∈C^2 ([0,a],R) , f(0)=f′(0)=0}  N_1 (f)= sup{∣f(x)∣+∣f′′(y)∣   ,x,y∈[0,a]}  N_2 (f)=sup{∣f(x)+f′′(x)∣   ,x∈[0,a]}  Prove that N_1 and N_2  are equivalents norms

$${Let}\:{a}>\mathrm{0},\:\:\:{A}=\left\{{f}\in{C}^{\mathrm{2}} \left(\left[\mathrm{0},{a}\right],\mathbb{R}\right)\:,\:{f}\left(\mathrm{0}\right)={f}'\left(\mathrm{0}\right)=\mathrm{0}\right\} \\ $$ $${N}_{\mathrm{1}} \left({f}\right)=\:{sup}\left\{\mid{f}\left({x}\right)\mid+\mid{f}''\left({y}\right)\mid\:\:\:,{x},{y}\in\left[\mathrm{0},{a}\right]\right\} \\ $$ $${N}_{\mathrm{2}} \left({f}\right)={sup}\left\{\mid{f}\left({x}\right)+{f}''\left({x}\right)\mid\:\:\:,{x}\in\left[\mathrm{0},{a}\right]\right\} \\ $$ $${Prove}\:{that}\:{N}_{\mathrm{1}} {and}\:{N}_{\mathrm{2}} \:{are}\:{equivalents}\:{norms} \\ $$

Commented bymnjuly1970 last updated on 03/Dec/20

  Real  analysis ...

$$\:\:{Real}\:\:{analysis}\:... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com