Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124432 by mnjuly1970 last updated on 03/Dec/20

                ... nice  calculus...      find::                 φ=∫_0 ^( 4) ((ln(x))/((4x−x^2 )^(1/2) ))dx=?

...nicecalculus...find::ϕ=04ln(x)(4xx2)12dx=?

Answered by mindispower last updated on 03/Dec/20

x=4t  q=∫_0 ^1 ((ln(4)+ln(t))/((t−t^2 )^(1/2) ))dt  w=ln(4)∫_0 ^1 (1/(t^(1/2) (1−t)^(1/2) ))+∫_0 ^1 ((ln(t))/( (√t).(√(1−t))))dt  =ln(4).∫_0 ^1 t^((1/2)−) (1−t)^((1/2)−1) dt+∂_c ∫_0 ^1 t^((1/2)+c−1) (1−t)^((1/2)−1) dt∣_(c=0)   =ln(4)β((1/2),(1/2))+∂_C β((1/2)+c,(1/2))∣_(c=0)   =((ln(4)π)/(sin((π/2))))+β((1/2)+c,(1/2))(Ψ((1/2)+c)−Ψ(1+c))∣_(c=0)   =πln(4)+π(Ψ((1/2))−Ψ(1))    =π(ln(4)+π(−2ln(2)−γ+γ)  =0

x=4tq=01ln(4)+ln(t)(tt2)12dtw=ln(4)011t12(1t)12+01ln(t)t.1tdt=ln(4).01t12(1t)121dt+c01t12+c1(1t)121dtc=0=ln(4)β(12,12)+Cβ(12+c,12)c=0=ln(4)πsin(π2)+β(12+c,12)(Ψ(12+c)Ψ(1+c))c=0=πln(4)+π(Ψ(12)Ψ(1))=π(ln(4)+π(2ln(2)γ+γ)=0

Commented by mnjuly1970 last updated on 03/Dec/20

mercey mr mindspower..  thanks alot...

merceymrmindspower..thanksalot...

Commented by mindispower last updated on 05/Dec/20

withe pleasur sir

withepleasursir

Answered by mnjuly1970 last updated on 03/Dec/20

another  way  we know :  ∫_0 ^( (π/2)) ln(sin(x))dx=((−π)/2)ln(2) ✓    x=4y     φ=∫_0 ^( 1) ((ln(4)+ln(y))/( (√y) (√(1−y)))) dy       =^(y=sin^2 (t)) ∫_0 ^( (π/2)) {((2ln(2)+2ln(sin(t))/(sin(t)cos(t)))}(2sin(t)cos(t))dt  =2πln(2)+4∫_0 ^( (π/2)) ln(sin(t))dt   =2πln(2)−2πln(2)=0✓

anotherwayweknow:0π2ln(sin(x))dx=π2ln(2)x=4yϕ=01ln(4)+ln(y)y1ydy=y=sin2(t)0π2{2ln(2)+2ln(sin(t)sin(t)cos(t)}(2sin(t)cos(t))dt=2πln(2)+40π2ln(sin(t))dt=2πln(2)2πln(2)=0

Answered by mathmax by abdo last updated on 03/Dec/20

A =∫_0 ^4  ((lnx)/( (√(4x−x^2 ))))dx ⇒ A =∫_0 ^4  ((lnx)/( (√(−(x^2 −4x+4−4)))))dx  =∫_0 ^4  ((lnx)/( (√(4−(x−2)^2 ))))dx =_(x−2=2cost)    ∫_π ^0  ((ln(2+2cost))/(2sint))(−2sint)dt  =∫_0 ^π ln(2(1+cost))dt =∫_0 ^π ln(4cos^2 ((t/2)))dt  =2πln(2) +2 ∫_0 ^π ln(cos((t/(2 ))))dt (→(t/2)=x)  =2πln(2)+2 ∫_0 ^(π/2) ln(cosx)(2dx) =2πln(2)+4(−(π/2)ln2)  =2πln2−2πln(2)=0 ⇒ A=0

A=04lnx4xx2dxA=04lnx(x24x+44)dx=04lnx4(x2)2dx=x2=2costπ0ln(2+2cost)2sint(2sint)dt=0πln(2(1+cost))dt=0πln(4cos2(t2))dt=2πln(2)+20πln(cos(t2))dt(t2=x)=2πln(2)+20π2ln(cosx)(2dx)=2πln(2)+4(π2ln2)=2πln22πln(2)=0A=0

Commented by mnjuly1970 last updated on 03/Dec/20

thanks alot sir max  excellent

thanksalotsirmaxexcellent

Terms of Service

Privacy Policy

Contact: info@tinkutara.com