Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124432 by mnjuly1970 last updated on 03/Dec/20

                ... nice  calculus...      find::                 φ=∫_0 ^( 4) ((ln(x))/((4x−x^2 )^(1/2) ))dx=?

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...\:{nice}\:\:{calculus}... \\ $$$$\:\:\:\:{find}:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\phi=\int_{\mathrm{0}} ^{\:\mathrm{4}} \frac{{ln}\left({x}\right)}{\left(\mathrm{4}{x}−{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{dx}=? \\ $$

Answered by mindispower last updated on 03/Dec/20

x=4t  q=∫_0 ^1 ((ln(4)+ln(t))/((t−t^2 )^(1/2) ))dt  w=ln(4)∫_0 ^1 (1/(t^(1/2) (1−t)^(1/2) ))+∫_0 ^1 ((ln(t))/( (√t).(√(1−t))))dt  =ln(4).∫_0 ^1 t^((1/2)−) (1−t)^((1/2)−1) dt+∂_c ∫_0 ^1 t^((1/2)+c−1) (1−t)^((1/2)−1) dt∣_(c=0)   =ln(4)β((1/2),(1/2))+∂_C β((1/2)+c,(1/2))∣_(c=0)   =((ln(4)π)/(sin((π/2))))+β((1/2)+c,(1/2))(Ψ((1/2)+c)−Ψ(1+c))∣_(c=0)   =πln(4)+π(Ψ((1/2))−Ψ(1))    =π(ln(4)+π(−2ln(2)−γ+γ)  =0

$${x}=\mathrm{4}{t} \\ $$$${q}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left(\mathrm{4}\right)+{ln}\left({t}\right)}{\left({t}−{t}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }{dt} \\ $$$${w}={ln}\left(\mathrm{4}\right)\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{{t}^{\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}\right)}{\:\sqrt{{t}}.\sqrt{\mathrm{1}−{t}}}{dt} \\ $$$$={ln}\left(\mathrm{4}\right).\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\frac{\mathrm{1}}{\mathrm{2}}−} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {dt}+\partial_{{c}} \int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\frac{\mathrm{1}}{\mathrm{2}}+{c}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} {dt}\mid_{{c}=\mathrm{0}} \\ $$$$={ln}\left(\mathrm{4}\right)\beta\left(\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}}\right)+\partial_{{C}} \beta\left(\frac{\mathrm{1}}{\mathrm{2}}+{c},\frac{\mathrm{1}}{\mathrm{2}}\right)\mid_{{c}=\mathrm{0}} \\ $$$$=\frac{{ln}\left(\mathrm{4}\right)\pi}{{sin}\left(\frac{\pi}{\mathrm{2}}\right)}+\beta\left(\frac{\mathrm{1}}{\mathrm{2}}+{c},\frac{\mathrm{1}}{\mathrm{2}}\right)\left(\Psi\left(\frac{\mathrm{1}}{\mathrm{2}}+{c}\right)−\Psi\left(\mathrm{1}+{c}\right)\right)\mid_{{c}=\mathrm{0}} \\ $$$$=\pi{ln}\left(\mathrm{4}\right)+\pi\left(\Psi\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\Psi\left(\mathrm{1}\right)\right) \\ $$$$ \\ $$$$=\pi\left({ln}\left(\mathrm{4}\right)+\pi\left(−\mathrm{2}{ln}\left(\mathrm{2}\right)−\gamma+\gamma\right)\right. \\ $$$$=\mathrm{0} \\ $$

Commented by mnjuly1970 last updated on 03/Dec/20

mercey mr mindspower..  thanks alot...

$${mercey}\:{mr}\:{mindspower}.. \\ $$$${thanks}\:{alot}... \\ $$

Commented by mindispower last updated on 05/Dec/20

withe pleasur sir

$${withe}\:{pleasur}\:{sir} \\ $$

Answered by mnjuly1970 last updated on 03/Dec/20

another  way  we know :  ∫_0 ^( (π/2)) ln(sin(x))dx=((−π)/2)ln(2) ✓    x=4y     φ=∫_0 ^( 1) ((ln(4)+ln(y))/( (√y) (√(1−y)))) dy       =^(y=sin^2 (t)) ∫_0 ^( (π/2)) {((2ln(2)+2ln(sin(t))/(sin(t)cos(t)))}(2sin(t)cos(t))dt  =2πln(2)+4∫_0 ^( (π/2)) ln(sin(t))dt   =2πln(2)−2πln(2)=0✓

$${another}\:\:{way} \\ $$$${we}\:{know}\:: \\ $$$$\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({x}\right)\right){dx}=\frac{−\pi}{\mathrm{2}}{ln}\left(\mathrm{2}\right)\:\checkmark \\ $$$$\:\:{x}=\mathrm{4}{y} \\ $$$$\:\:\:\phi=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{4}\right)+{ln}\left({y}\right)}{\:\sqrt{{y}}\:\sqrt{\mathrm{1}−{y}}}\:{dy} \\ $$$$\:\:\:\:\:\overset{{y}={sin}^{\mathrm{2}} \left({t}\right)} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left\{\frac{\mathrm{2}{ln}\left(\mathrm{2}\right)+\mathrm{2}{ln}\left({sin}\left({t}\right)\right.}{{sin}\left({t}\right){cos}\left({t}\right)}\right\}\left(\mathrm{2}{sin}\left({t}\right){cos}\left({t}\right)\right){dt} \\ $$$$=\mathrm{2}\pi{ln}\left(\mathrm{2}\right)+\mathrm{4}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {ln}\left({sin}\left({t}\right)\right){dt} \\ $$$$\:=\mathrm{2}\pi{ln}\left(\mathrm{2}\right)−\mathrm{2}\pi{ln}\left(\mathrm{2}\right)=\mathrm{0}\checkmark \\ $$

Answered by mathmax by abdo last updated on 03/Dec/20

A =∫_0 ^4  ((lnx)/( (√(4x−x^2 ))))dx ⇒ A =∫_0 ^4  ((lnx)/( (√(−(x^2 −4x+4−4)))))dx  =∫_0 ^4  ((lnx)/( (√(4−(x−2)^2 ))))dx =_(x−2=2cost)    ∫_π ^0  ((ln(2+2cost))/(2sint))(−2sint)dt  =∫_0 ^π ln(2(1+cost))dt =∫_0 ^π ln(4cos^2 ((t/2)))dt  =2πln(2) +2 ∫_0 ^π ln(cos((t/(2 ))))dt (→(t/2)=x)  =2πln(2)+2 ∫_0 ^(π/2) ln(cosx)(2dx) =2πln(2)+4(−(π/2)ln2)  =2πln2−2πln(2)=0 ⇒ A=0

$$\mathrm{A}\:=\int_{\mathrm{0}} ^{\mathrm{4}} \:\frac{\mathrm{lnx}}{\:\sqrt{\mathrm{4x}−\mathrm{x}^{\mathrm{2}} }}\mathrm{dx}\:\Rightarrow\:\mathrm{A}\:=\int_{\mathrm{0}} ^{\mathrm{4}} \:\frac{\mathrm{lnx}}{\:\sqrt{−\left(\mathrm{x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{4}−\mathrm{4}\right)}}\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{4}} \:\frac{\mathrm{lnx}}{\:\sqrt{\mathrm{4}−\left(\mathrm{x}−\mathrm{2}\right)^{\mathrm{2}} }}\mathrm{dx}\:=_{\mathrm{x}−\mathrm{2}=\mathrm{2cost}} \:\:\:\int_{\pi} ^{\mathrm{0}} \:\frac{\mathrm{ln}\left(\mathrm{2}+\mathrm{2cost}\right)}{\mathrm{2sint}}\left(−\mathrm{2sint}\right)\mathrm{dt} \\ $$$$=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{2}\left(\mathrm{1}+\mathrm{cost}\right)\right)\mathrm{dt}\:=\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{4cos}^{\mathrm{2}} \left(\frac{\mathrm{t}}{\mathrm{2}}\right)\right)\mathrm{dt} \\ $$$$=\mathrm{2}\pi\mathrm{ln}\left(\mathrm{2}\right)\:+\mathrm{2}\:\int_{\mathrm{0}} ^{\pi} \mathrm{ln}\left(\mathrm{cos}\left(\frac{\mathrm{t}}{\mathrm{2}\:}\right)\right)\mathrm{dt}\:\left(\rightarrow\frac{\mathrm{t}}{\mathrm{2}}=\mathrm{x}\right) \\ $$$$=\mathrm{2}\pi\mathrm{ln}\left(\mathrm{2}\right)+\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{ln}\left(\mathrm{cosx}\right)\left(\mathrm{2dx}\right)\:=\mathrm{2}\pi\mathrm{ln}\left(\mathrm{2}\right)+\mathrm{4}\left(−\frac{\pi}{\mathrm{2}}\mathrm{ln2}\right) \\ $$$$=\mathrm{2}\pi\mathrm{ln2}−\mathrm{2}\pi\mathrm{ln}\left(\mathrm{2}\right)=\mathrm{0}\:\Rightarrow\:\mathrm{A}=\mathrm{0} \\ $$

Commented by mnjuly1970 last updated on 03/Dec/20

thanks alot sir max  excellent

$${thanks}\:{alot}\:{sir}\:{max} \\ $$$${excellent} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com