Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 124461 by Dwaipayan Shikari last updated on 03/Dec/20

∫_0 ^∞ e^(−x^7 ) sin(x^7 )dx

0ex7sin(x7)dx

Commented by Dwaipayan Shikari last updated on 03/Dec/20

I have found  ((Γ((8/7)) sin((π/(28))))/( 2^(1/(14)) ))

IhavefoundΓ(87)sin(π28)2114

Commented by Dwaipayan Shikari last updated on 03/Dec/20

My way  (1/(2i))∫_0 ^∞ e^(−x^7 ) e^(ix^7 ) −(1/(2i))∫_0 ^∞ e^(−x^7 (1+i)) dx      x^7 =u⇒7x^6 ⇒(du/dx)  =(e^(−(π/2)i) /2)∫_0 ^∞ u^(−(6/7)) e^(−u(1−i)) du −(e^(−(π/2)i) /2)∫_0 ^∞ u^(−(6/7)) e^(−u(1+i))        =Γ((8/7))(((e^(−(π/2)i) (1−i)^(−(1/7)) )/2)−((e^(((−π)/2)i) (1+i)^(−(1/7)) )/2))  =((Γ((8/7)))/( (2^(15) )^(1/(14)) ))(e^(−(π/2)i+(π/(28))i) −e^(−(π/2)i−(π/(28))i) )=((sin((π/(28)))Γ((8/7)))/( (2)^(1/(14)) ))

Myway12i0ex7eix712i0ex7(1+i)dxx7=u7x6dudx=eπ2i20u67eu(1i)dueπ2i20u67eu(1+i)=Γ(87)(eπ2i(1i)172eπ2i(1+i)172)=Γ(87)21514(eπ2i+π28ieπ2iπ28i)=sin(π28)Γ(87)214

Answered by mnjuly1970 last updated on 03/Dec/20

x^7 =t   (1/7)∫_0 ^( ∞) e^(−t) sin(t)(dt/t^(6/7) )  I=((−1)/7)Im(∫_0 ^( ∞) e^(−t) e^(−it) (dt/t^(6/7) ))     =−(1/7)Im(∫_(0 ) ^( ∞) e^(−t(1+i)) (dt/t^(6/7) ))     =^(t(1+i)=u) −(1/7)Im((1/(1+i))∫_0 ^( ∞) e^(−u) (du/((1+i)^(−(6/7)) u^(6/7) )))  −(1/7)Im(1/((1+i)^(1/7) ))∫_0 ^( ∞) e^(−u) u^(((−6)/7)+1−1)   =((−1)/7)Im(1/((1+2i−1)^(1/(14)) ))Γ((1/7))   =((−1)/( (2)^(1/(14))  ))Γ((8/7))Im(1/((e^((iπ)/2) )^(1/(14)) ))  =((−1)/( (2)^(1/(14)) ))Γ((8/7))Im{cos((π/(28)))−isin((π/(28)))  ∴     Ω=∫_0 ^( ∞) e^(−x^7 ) sin(x^7 )dx=(1/( (2)^(1/(14)) ))Γ((8/7))sin((π/(28))) ✓               .....

x7=t170etsin(t)dtt67I=17Im(0eteitdtt67)=17Im(0et(1+i)dtt67)=t(1+i)=u17Im(11+i0eudu(1+i)67u67)17Im1(1+i)170euu67+11=17Im1(1+2i1)114Γ(17)=1214Γ(87)Im1(eiπ2)114=1214Γ(87)Im{cos(π28)isin(π28)Ω=0ex7sin(x7)dx=1214Γ(87)sin(π28).....

Commented by Dwaipayan Shikari last updated on 03/Dec/20

Thanking you

Thankingyou

Commented by mnjuly1970 last updated on 03/Dec/20

grateful  your questions are very stunning..

gratefulyourquestionsareverystunning..

Answered by mathmax by abdo last updated on 03/Dec/20

let A = ∫_0 ^∞  e^(−x^7 ) sin(x^7 )dx ⇒A=_(x^7 =t)   (1/7)∫_0 ^∞  e^(−t) sin(t) t^((1/7)−1) dt  =(1/7)∫_0 ^∞  t^(−(6/7))  e^(−t)  sint dt  =(1/7)Im(∫_0 ^∞  t^(−(6/7))  e^(−t+it) dt)but  ∫_0 ^∞  t^(−(6/7))  e^(−(1−i)t) dt =_((1−i)t=u)   ∫_0 ^∞   (u^(−(6/7)) /((1−i)^(−(6/7)) )) e^(−u)   (du/(1−i))  =(1/((1−i)^(1−(6/7)) ))∫_0 ^∞   u^(−(6/7))  e^(−u)  du  =(1−i)^(−(1/7))  ∫_0 ^∞   u^((1/7)−1)  e^(−u) du  =((√2)e^(−((iπ)/4)) )^(−(1/7))  ×Γ((1/7)) =(1/(((√2))^(1/7) )) e^((iπ)/(28))  ×Γ((1/7))  =(1/2^(1/(14)) )×Γ((1/7)){cos((π/(28)))+isin((π/(28)))} ⇒  ∫_0 ^∞   e^(−x^7  )  sin(x^7 )dx =((Γ((1/7)))/7)×((sin((π/(28))))/2^(1/(14)) )

letA=0ex7sin(x7)dxA=x7=t170etsin(t)t171dt=170t67etsintdt=17Im(0t67et+itdt)but0t67e(1i)tdt=(1i)t=u0u67(1i)67eudu1i=1(1i)1670u67eudu=(1i)170u171eudu=(2eiπ4)17×Γ(17)=1(2)17eiπ28×Γ(17)=12114×Γ(17){cos(π28)+isin(π28)}0ex7sin(x7)dx=Γ(17)7×sin(π28)2114

Commented by mathmax by abdo last updated on 03/Dec/20

(1/7)Γ((1/7))=Γ(1+(1/7))=Γ((8/7))

17Γ(17)=Γ(1+17)=Γ(87)

Commented by Dwaipayan Shikari last updated on 03/Dec/20

Thanking you

Thankingyou

Commented by mathmax by abdo last updated on 03/Dec/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com