All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 124530 by Bird last updated on 03/Dec/20
find∫0∞cos(xn)dxsnd∫0∞sin(xn)dx
Commented by Dwaipayan Shikari last updated on 04/Dec/20
∫0∞sin(xn)dx=12i∫0∞eixn−e−ixndx=12in∫0∞u1−nneiudu−12in∫t1−nne−iuduxn=uiu=−Λ,iu=Ψ=−12in∫0∞(Λ−i)1−nne−ΛdΛ−(−i)1−nn2in∫0∞Ψ1−nne−ΨdΨ=Γ(1n+1)(−(i)1−nn2in−(−i)1−nn2in)=12nΓ(1n+1)(−eπ2(1n−1)ii−e−π2(1n−1)ii)=12nΓ(1n+1)(−2sinπ2(1n−1))=1nΓ(1+nn)cos(π2−π2n)=1nΓ(1+nn)sin(π2n)
Answered by mathmax by abdo last updated on 04/Dec/20
letI=∫0∞cos(xn)dxandJ=∫0∞sin(xn)dx⇒I−iJ=∫0∞e−ixndxchangementixn=tgivexn=−it⇒x=(−it)1n=(−i)1nt1n=(e−iπ2)1nt1n=e−iπ2nt1n⇒I−iJ=e−iπ2n∫0∞e−t1nt1n−1dt=1ne−iπ2n∫0∞t1n−1e−tdt=1nΓ(1n){cos(π2n)−isin(π2n)}⇒∫0∞cos(xn)dx=1nΓ(1n)cos(π2n)and∫0∞sin(xn)dx=1nΓ(1n)sin(π2n)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com