Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124530 by Bird last updated on 03/Dec/20

find ∫_0 ^∞  cos(x^n )dx snd ∫_0 ^∞ sin(x^n )dx

find0cos(xn)dxsnd0sin(xn)dx

Commented by Dwaipayan Shikari last updated on 04/Dec/20

∫_0 ^∞ sin(x^n )dx  =(1/(2i))∫_0 ^∞ e^(ix^n ) −e^(−ix^n ) dx    =(1/(2in))∫_0 ^∞ u^((1−n)/n) e^(iu) du−(1/(2in))∫t^((1−n)/n) e^(−iu) du           x^n =u    iu=−Λ, iu=Ψ  =−(1/(2in))∫_0 ^∞ ((Λ/(−i)))^((1−n)/n) e^(−Λ) dΛ  −(((−i)^((1−n)/n) )/(2in))∫_0 ^∞ Ψ^((1−n)/n) e^(−Ψ) dΨ  =Γ((1/n)+1)(−(((i)^((1−n)/n) )/(2in))−(((−i)^((1−n)/n) )/(2in))) =(1/(2n))Γ((1/n)+1)(−(e^((π/2)((1/n)−1)i) /i)−(e^(−(π/2)((1/n)−1)i) /i))  =(1/(2n))Γ((1/n)+1)(−2sin(π/2)((1/n)−1))=(1/n)Γ(((1+n)/n))cos((π/2)−(π/(2n)))  =(1/n)Γ(((1+n)/n))sin((π/(2n)))

0sin(xn)dx=12i0eixneixndx=12in0u1nneiudu12int1nneiuduxn=uiu=Λ,iu=Ψ=12in0(Λi)1nneΛdΛ(i)1nn2in0Ψ1nneΨdΨ=Γ(1n+1)((i)1nn2in(i)1nn2in)=12nΓ(1n+1)(eπ2(1n1)iieπ2(1n1)ii)=12nΓ(1n+1)(2sinπ2(1n1))=1nΓ(1+nn)cos(π2π2n)=1nΓ(1+nn)sin(π2n)

Answered by mathmax by abdo last updated on 04/Dec/20

let I =∫_0 ^∞  cos(x^n )dx and J =∫_0 ^∞  sin(x^n )dx ⇒  I−iJ =∫_0 ^∞   e^(−ix^n ) dx  changement ix^n  =t give x^n  =−it ⇒  x=(−it)^(1/n)  =(−i)^(1/n)  t^(1/n)  =(e^(−((iπ)/2)) )^(1/n)  t^(1/n)  =e^(−((iπ)/(2n)))  t^(1/n)  ⇒  I−iJ =e^(−((iπ)/(2n))) ∫_0 ^∞   e^(−t)  (1/n)t^((1/n)−1)  dt =(1/n) e^(−((iπ)/(2n)))  ∫_0 ^∞  t^((1/n)−1)  e^(−t)  dt  =(1/n)Γ((1/n)){cos((π/(2n)))−isin((π/(2n)))} ⇒  ∫_0 ^∞  cos(x^n )dx =(1/n)Γ((1/n))cos((π/(2n))) and  ∫_0 ^∞  sin(x^n )dx =(1/n)Γ((1/n))sin((π/(2n)))

letI=0cos(xn)dxandJ=0sin(xn)dxIiJ=0eixndxchangementixn=tgivexn=itx=(it)1n=(i)1nt1n=(eiπ2)1nt1n=eiπ2nt1nIiJ=eiπ2n0et1nt1n1dt=1neiπ2n0t1n1etdt=1nΓ(1n){cos(π2n)isin(π2n)}0cos(xn)dx=1nΓ(1n)cos(π2n)and0sin(xn)dx=1nΓ(1n)sin(π2n)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com