Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124532 by liberty last updated on 04/Dec/20

 ∫ (dx/(x^2 (√(x^2 −1)))) ?

$$\:\int\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}\:? \\ $$

Answered by bemath last updated on 04/Dec/20

 ϑ(x) = ∫ (dx/(x^3  (√(1−x^(−2) )))) = ∫ (x^(−3) /( (√(1−x^(−2) )))) dx  letting z = 1−x^(−2)  →dz = 2x^(−3)  dx   ϑ(x)= (1/2)∫ (dz/( (√z))) = (1/2)∫ z^(−(1/2))  dz    ϑ(x) = (√z) + c = (√(1−(1/x^2 ))) + c    ϑ(x) = ((√(x^2 −1))/x) + c

$$\:\vartheta\left({x}\right)\:=\:\int\:\frac{{dx}}{{x}^{\mathrm{3}} \:\sqrt{\mathrm{1}−{x}^{−\mathrm{2}} }}\:=\:\int\:\frac{{x}^{−\mathrm{3}} }{\:\sqrt{\mathrm{1}−{x}^{−\mathrm{2}} }}\:{dx} \\ $$$${letting}\:{z}\:=\:\mathrm{1}−{x}^{−\mathrm{2}} \:\rightarrow{dz}\:=\:\mathrm{2}{x}^{−\mathrm{3}} \:{dx} \\ $$$$\:\vartheta\left({x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{{dz}}{\:\sqrt{{z}}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:{z}^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{dz}\: \\ $$$$\:\vartheta\left({x}\right)\:=\:\sqrt{{z}}\:+\:{c}\:=\:\sqrt{\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}\:+\:{c}\: \\ $$$$\:\vartheta\left({x}\right)\:=\:\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}}\:+\:{c}\: \\ $$

Answered by MJS_new last updated on 04/Dec/20

I′m absolutely crazy and I should be kept  away from students...  this is no fun to transform but I had lots of  fun transforming it and the integral... look  at the integral... isn′t it super easy?!  t=(√(2x(x+(√(x^2 −1))))) ⇔ x=(t^2 /(2(√(t^2 −1))))  → dx=((t(t^2 −2))/(2(t^2 −1)^(3/2) ))dt  ∫(dx/(x^2 (√(x^2 −1))))=8∫(((t^2 −1)^(3/2) )/(t^4 (t^2 −2)))dx=  = ♥ 4∫(dt/t^3 ) ♥ =−(2/t^2 )=−(1/(x(x+(√(x^2 −1)))))=  =(((√(x^2 −1))−x)/x)=((√(x^2 −1))/x)−1=((√(x^2 −1))/x)+C

$$\mathrm{I}'\mathrm{m}\:\mathrm{absolutely}\:\mathrm{crazy}\:\mathrm{and}\:\mathrm{I}\:\mathrm{should}\:\mathrm{be}\:\mathrm{kept} \\ $$$$\mathrm{away}\:\mathrm{from}\:\mathrm{students}... \\ $$$$\mathrm{this}\:\mathrm{is}\:\mathrm{no}\:\mathrm{fun}\:\mathrm{to}\:\mathrm{transform}\:\mathrm{but}\:\mathrm{I}\:\mathrm{had}\:\mathrm{lots}\:\mathrm{of} \\ $$$$\mathrm{fun}\:\mathrm{transforming}\:\mathrm{it}\:\mathrm{and}\:\mathrm{the}\:\mathrm{integral}...\:\mathrm{look} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{integral}...\:\mathrm{isn}'\mathrm{t}\:\mathrm{it}\:{super}\:{easy}?! \\ $$$${t}=\sqrt{\mathrm{2}{x}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)}\:\Leftrightarrow\:{x}=\frac{{t}^{\mathrm{2}} }{\mathrm{2}\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$\rightarrow\:{dx}=\frac{{t}\left({t}^{\mathrm{2}} −\mathrm{2}\right)}{\mathrm{2}\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}/\mathrm{2}} }{dt} \\ $$$$\int\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}=\mathrm{8}\int\frac{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{3}/\mathrm{2}} }{{t}^{\mathrm{4}} \left({t}^{\mathrm{2}} −\mathrm{2}\right)}{dx}= \\ $$$$=\:\heartsuit\:\mathrm{4}\int\frac{{dt}}{{t}^{\mathrm{3}} }\:\heartsuit\:=−\frac{\mathrm{2}}{{t}^{\mathrm{2}} }=−\frac{\mathrm{1}}{{x}\left({x}+\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}\right)}= \\ $$$$=\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}−{x}}{{x}}=\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}}−\mathrm{1}=\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}}+{C} \\ $$

Commented by bemath last updated on 04/Dec/20

hahaha..you are not crazy prof. but  you are a master of math and   santuy. wkwkwk...

$${hahaha}..{you}\:{are}\:{not}\:{crazy}\:{prof}.\:{but} \\ $$$${you}\:{are}\:{a}\:{master}\:{of}\:{math}\:{and}\: \\ $$$${santuy}.\:{wkwkwk}... \\ $$

Answered by Ar Brandon last updated on 04/Dec/20

I=∫(dx/(x^2 (√(x^2 −1))))=∫(dx/(x^3 (√(1−(1/x^2 )))))  1−(1/x^2 )=u ⇒ (2/x^3 )dx=du  I=∫(1/( (√u)))∙(du/2)=(√u)+C=(√(1−(1/x^2 )))+C

$$\mathcal{I}=\int\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}=\int\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{3}} \sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}} \\ $$$$\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }=\mathrm{u}\:\Rightarrow\:\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{3}} }\mathrm{dx}=\mathrm{du} \\ $$$$\mathcal{I}=\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{u}}}\centerdot\frac{\mathrm{du}}{\mathrm{2}}=\sqrt{\mathrm{u}}+\mathcal{C}=\sqrt{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }}+\mathcal{C} \\ $$

Answered by malwan last updated on 04/Dec/20

x = sec y ⇒ dx = secy tany dy  ∴ ∫(( secy tany)/(sec^2 y (√(sec^2 y − 1)))) dy = ∫(( tan y)/(sec y (√(tan^2 y)))) dy  = ∫(( dy)/(sec y)) = ∫ cos y dy = ((√(x^2 −1))/x) + C

$${x}\:=\:{sec}\:{y}\:\Rightarrow\:{dx}\:=\:{secy}\:{tany}\:{dy} \\ $$$$\therefore\:\int\frac{\:{secy}\:{tany}}{{sec}^{\mathrm{2}} {y}\:\sqrt{{sec}^{\mathrm{2}} {y}\:−\:\mathrm{1}}}\:{dy}\:=\:\int\frac{\:{tan}\:{y}}{{sec}\:{y}\:\sqrt{{tan}^{\mathrm{2}} {y}}}\:{dy} \\ $$$$=\:\int\frac{\:{dy}}{{sec}\:{y}}\:=\:\int\:{cos}\:{y}\:{dy}\:=\:\frac{\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{{x}}\:+\:{C} \\ $$

Answered by mathmax by abdo last updated on 04/Dec/20

I =∫    (dx/(x^2 (√(x^2 −1)))) we do the changement x=cht ⇒  I =∫   ((sht)/(ch^2 t sh(t)))dt =2∫  (dt/(1+ch(2t))) =_(2t=u)   2∫   (du/(2(1+chu)))  =∫  (du/(1+((e^(u ) +e^(−u) )/2))) =2 ∫  (du/(2+e^u  +e^(−u) )) =_(e^u  =y)    2∫   (dy/(y(2+y+y^(−1) )))  =2∫  (dy/(2y+y^2 +1)) =2∫  (dy/((y+1)^2 )) =−(2/(y+1)) +C  we have  y=e^u  =e^(2t)  and  t=argch(x)=ln(x+(√(x^2 −1))) ⇒  e^(2t)  =(x+(√(x^2 −1)))^2  ⇒ I =((−2)/((x+(√(x^2 −1)))^2 +1)) +C

$$\mathrm{I}\:=\int\:\:\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{x}=\mathrm{cht}\:\Rightarrow \\ $$$$\mathrm{I}\:=\int\:\:\:\frac{\mathrm{sht}}{\mathrm{ch}^{\mathrm{2}} \mathrm{t}\:\mathrm{sh}\left(\mathrm{t}\right)}\mathrm{dt}\:=\mathrm{2}\int\:\:\frac{\mathrm{dt}}{\mathrm{1}+\mathrm{ch}\left(\mathrm{2t}\right)}\:=_{\mathrm{2t}=\mathrm{u}} \:\:\mathrm{2}\int\:\:\:\frac{\mathrm{du}}{\mathrm{2}\left(\mathrm{1}+\mathrm{chu}\right)} \\ $$$$=\int\:\:\frac{\mathrm{du}}{\mathrm{1}+\frac{\mathrm{e}^{\mathrm{u}\:} +\mathrm{e}^{−\mathrm{u}} }{\mathrm{2}}}\:=\mathrm{2}\:\int\:\:\frac{\mathrm{du}}{\mathrm{2}+\mathrm{e}^{\mathrm{u}} \:+\mathrm{e}^{−\mathrm{u}} }\:=_{\mathrm{e}^{\mathrm{u}} \:=\mathrm{y}} \:\:\:\mathrm{2}\int\:\:\:\frac{\mathrm{dy}}{\mathrm{y}\left(\mathrm{2}+\mathrm{y}+\mathrm{y}^{−\mathrm{1}} \right)} \\ $$$$=\mathrm{2}\int\:\:\frac{\mathrm{dy}}{\mathrm{2y}+\mathrm{y}^{\mathrm{2}} +\mathrm{1}}\:=\mathrm{2}\int\:\:\frac{\mathrm{dy}}{\left(\mathrm{y}+\mathrm{1}\right)^{\mathrm{2}} }\:=−\frac{\mathrm{2}}{\mathrm{y}+\mathrm{1}}\:+\mathrm{C}\:\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{y}=\mathrm{e}^{\mathrm{u}} \:=\mathrm{e}^{\mathrm{2t}} \:\mathrm{and}\:\:\mathrm{t}=\mathrm{argch}\left(\mathrm{x}\right)=\mathrm{ln}\left(\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\right)\:\Rightarrow \\ $$$$\mathrm{e}^{\mathrm{2t}} \:=\left(\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\right)^{\mathrm{2}} \:\Rightarrow\:\mathrm{I}\:=\frac{−\mathrm{2}}{\left(\mathrm{x}+\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}\right)^{\mathrm{2}} +\mathrm{1}}\:+\mathrm{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com