All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 124548 by mnjuly1970 last updated on 04/Dec/20
...nicecalculus...evaluate:::limx→0{1x[ln(Γ(1+x)x−ψ(x+1)]}=?
Answered by mindispower last updated on 04/Dec/20
ln(Γ(1+x))=f(x)f(x)=f(0)+f′(0)x+f″(0)x22+o(x2)f(0)=0,f′(0)=Ψ(1),f″(0)=Ψ1(1)Ψ(x+1)=Ψ(1)+Ψ1(1)x+o(x)ln(Γ(1+x))x−Ψ(x+1)=xΨ(1)+x22Ψ1(1)+o(x2)x−Ψ(1)−Ψ1(1)x+o(x)=−Ψ1(1)2x+o(x)limx→0{1x[ln(Γ(1+x))x−Ψ(1+x)]}=limx→01x.−Ψ(1)2x+o(x)=limx→0−Ψ1(1)2+o(1)=−Ψ1(1)2Ψ1(z)=∑j⩾01(j+z)2⇒Ψ1(1)=∑j⩾01(1+j)2=π26weget−π212
Commented by mnjuly1970 last updated on 04/Dec/20
bravomrmindspowermaclaurenexpansionofΓ(x+1)grateful...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com