Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 124567 by mr W last updated on 04/Dec/20

find the smallest integer which has  28 divisors and is divisible by 28.

findthesmallestintegerwhichhas28divisorsandisdivisibleby28.

Answered by mr W last updated on 05/Dec/20

say the number is n=p^a q^b r^c ...    (a+1)(b+1)(c+1)...=28  =28×1 ⇒a=27 ⇒n=p^(27)    ...(i)  =14×2 ⇒a=13, b=1 ⇒n=p^(13) q^1   ...(ii)  =7×4 ⇒a=6, b=3 ⇒n=p^6 q^3   ...(iii)  =7×2×2 ⇒a=6, b=1, c=1 ⇒n=p^6 q^1 r^1   ...(iv)    28=2^2 ×7^1   such that n is divisible by 28, n must  contain at least 2^(≥2) 7^(≥1)   case (i):  impossible  case (ii):  n_(min) =2^(13) ×7^1 =57344  case (iii):  n_(min) =2^6 ×7^3 =21952  case (iv):  n_(min) =2^6 ×3^1 ×7^1 =1344  ⇒the number is 1344.

saythenumberisn=paqbrc...(a+1)(b+1)(c+1)...=28=28×1a=27n=p27...(i)=14×2a=13,b=1n=p13q1...(ii)=7×4a=6,b=3n=p6q3...(iii)=7×2×2a=6,b=1,c=1n=p6q1r1...(iv)28=22×71suchthatnisdivisibleby28,nmustcontainatleast2271case(i):impossiblecase(ii):nmin=213×71=57344case(iii):nmin=26×73=21952case(iv):nmin=26×31×71=1344thenumberis1344.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com