Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124579 by bemath last updated on 04/Dec/20

  I=∫_0 ^( ∞)  (dx/((x+(√(x^2 +1)))^2 )) ?

I=0dx(x+x2+1)2?

Answered by liberty last updated on 04/Dec/20

I=∫_( 0) ^( ∞)  (dx/((x+(√(x^2 +1)))^2 ))   letting cot 2β = x →dx = −2cosec^2 β dβ  the integral becomes   I=∫_(π/4) ^( 0) ((−2cosec^2 2β dβ)/((cot 2β+cosec 2β)^2 ))  I=∫_(0 ) ^( π/4) (1/((cos 2β+1)^2 )) dβ = (1/2)∫_0 ^( π/4)  (dβ/(cos^4 β))  I=(1/2)∫_0 ^( π/4)  sec^2 β(tan^2 β+1) dβ  I= (1/2) [ ((tan^3 β)/3)+tan β ]_( 0) ^(π/4) = (2/3)

I=0dx(x+x2+1)2lettingcot2β=xdx=2cosec2βdβtheintegralbecomesI=π/402cosec22βdβ(cot2β+cosec2β)2I=π/401(cos2β+1)2dβ=12π/40dβcos4βI=12π/40sec2β(tan2β+1)dβI=12[tan3β3+tanβ]0π/4=23

Commented by peter frank last updated on 05/Dec/20

thanks

thanks

Answered by Bird last updated on 04/Dec/20

I=∫_0 ^∞   (dx/((x+(√(x^2 +1)))^2 )) we do the changement  x=sht ⇒I=∫_0 ^∞  ((cht)/((sht+cht)^2 ))dt  =∫_0 ^∞   ((cht)/((((e^t −e^(−t) )/2)+((e^t −e^(−t) )/2))^2 ))dt  =∫_0 ^∞ e^(−2t) (((e^t +e^(−t) )/2))dt  =(1/2)∫_0 ^∞  (e^(−t ) +e^(−3t) )dt  =(1/2)[−e^(−t) −(1/3)e^(−3t) ]_0 ^(+∞)   =(1/2)( 1+(1/3))=(1/2)((4/3))=(2/3)

I=0dx(x+x2+1)2wedothechangementx=shtI=0cht(sht+cht)2dt=0cht(etet2+etet2)2dt=0e2t(et+et2)dt=120(et+e3t)dt=12[et13e3t]0+=12(1+13)=12(43)=23

Answered by Dwaipayan Shikari last updated on 04/Dec/20

As per  previous result   I=[−(1/(6(x+(√(x^2 +1)))^3 ))−(1/(2(x+(√(x^2 +1)))))]_0 ^∞ =(1/6)+(1/2)=(2/3)

AsperpreviousresultI=[16(x+x2+1)312(x+x2+1)]0=16+12=23

Answered by Ar Brandon last updated on 04/Dec/20

I=∫_0 ^∞ (dx/((x+(√(x^2 +1)))^2 ))  t=x+(√(x^2 +1)) , x=((t^2 −1)/(2t)), dx=((t^2 +1)/(2t^2 ))dt  I=∫_1 ^∞ (1/t^2 )∙((t^2 +1)/(2t^2 ))dt=(1/2)∫_1 ^∞ {(1/t^2 )+(1/t^4 )}dt     =−(1/2){(1/t)+(1/(3t^3 ))}_1 ^∞ =(2/3)

I=0dx(x+x2+1)2t=x+x2+1,x=t212t,dx=t2+12t2dtI=11t2t2+12t2dt=121{1t2+1t4}dt=12{1t+13t3}1=23

Answered by Ar Brandon last updated on 04/Dec/20

I=∫_0 ^∞ (dx/((x+(√(x^2 +1)))^2 ))  x=tanθ ⇒ dx=sec^2 θdθ  I=∫_0 ^(π/2) ((sec^2 θdθ)/((tanθ+(√(tan^2 θ+1)))^2 ))=∫_0 ^(π/2) ((sec^2 θdθ)/((tanθ+secθ)^2 ))     =∫_0 ^(π/2) (dθ/((sinθ+1)^2 ))=∫_0 ^(π/2) (((1−sinθ)^2 )/((1−sin^2 θ)^2 ))dθ     =∫_0 ^(π/2) {((1−2sinθ+sin^2 θ)/(cos^4 θ))}dθ=∫_0 ^(π/2) {((cos^2 θ−2sinθ+2sin^2 θ)/(cos^4 θ))}dθ     =∫_0 ^(π/2) sec^2 θdθ+2∫_0 ^(π/2) (((−sinθ))/(cos^4 θ))dθ+2∫_0 ^(π/2) tan^2 θsec^2 θdθ     ={tanθ−(2/(3cos^3 θ))+((2tan^3 θ)/3)}_0 ^(π/2) =(2/3)

I=0dx(x+x2+1)2x=tanθdx=sec2θdθI=0π2sec2θdθ(tanθ+tan2θ+1)2=0π2sec2θdθ(tanθ+secθ)2=0π2dθ(sinθ+1)2=0π2(1sinθ)2(1sin2θ)2dθ=0π2{12sinθ+sin2θcos4θ}dθ=0π2{cos2θ2sinθ+2sin2θcos4θ}dθ=0π2sec2θdθ+20π2(sinθ)cos4θdθ+20π2tan2θsec2θdθ={tanθ23cos3θ+2tan3θ3}0π2=23

Terms of Service

Privacy Policy

Contact: info@tinkutara.com