Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124587 by mnjuly1970 last updated on 04/Dec/20

               ...nice ◂::::▶ calculus       simple  question::       prove  that ::       ∫_0 ^( ∞) (4/( (√(4+x^4 )))) dx=^(???) ∫_0 ^( (π/2)) (dx/( (√(sin(x))))) +∫_0 ^( (π/2)) (dx/( (√(cos(x)))))

...nice::::calculussimplequestion::provethat::044+x4dx=???0π2dxsin(x)+0π2dxcos(x)

Answered by mindispower last updated on 04/Dec/20

x=(√2)t  =∫((2(√2)dt)/( (√(1+t^4 ))))  t=(√(tg(x)))  dt=(1/(2cos^2 (x)(√(tg(x)))))  =((√2)/( (√(tg(x))))) .(1/(cos(x)))dx=∫_0 ^(π/2) ((√2)/( (√(sin(x)cos(x)))))  dx  =∫_0 ^(π/2) ((2dx)/( (√(2sin(x)cos(x)))))2∫(dx/( (√(sin(2x)))))  2x=w  ⇒=∫_0 ^π (dw/( (√(sin(w)))))=∫_0 ^(π/2) (dw/( (√(sin(w)))))+∫_(π/2) ^π (dw/( (√(sin(w)))))∣_(w=(π/2)+x)   =∫_0 ^(π/2) (dx/( (√(sin(x)))))+∫_0 ^(π/2) (dx/( (√(cos(x)))))

x=2t=22dt1+t4t=tg(x)dt=12cos2(x)tg(x)=2tg(x).1cos(x)dx=0π22sin(x)cos(x)dx=0π22dx2sin(x)cos(x)2dxsin(2x)2x=w⇒=0πdwsin(w)=0π2dwsin(w)+π2πdwsin(w)w=π2+x=0π2dxsin(x)+0π2dxcos(x)

Commented by mindispower last updated on 05/Dec/20

withe plesur

witheplesur

Commented by mnjuly1970 last updated on 04/Dec/20

excellent.sir mindspower  as always...

excellent.sirmindspowerasalways...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com