All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 124594 by physicstutes last updated on 04/Dec/20
Showthat∫0ln21cosh(x+ln4)dx=2tan−1(433)
Commented by mohammad17 last updated on 04/Dec/20
let:y=x+ln4⇒dy=dxx=0⇒y=ln4,x=ln2⇒y=ln2+ln4=ln8∫ln4ln81cosh(y)dy=∫ln4ln8(2ey+e−y)dy=∫ln4ln8(2eye2y+1)dy=(2tan−1(ey))ln4ln8=2tan−1(8)−2tan−1(4)(mohammadAl−dolaimy)
Answered by Ar Brandon last updated on 04/Dec/20
I=∫0ln21cosh(x+ln4)dxx+ln4=u⇒dx=duI=∫ln4ln8ducosh(u)=∫ln4ln8du12(eu+e−u)=2∫ln4ln8eudue2u+1=2∫48dtt2+1=2[tan−1(t)]48=2[tan−1(8)−tan−1(4)]
Terms of Service
Privacy Policy
Contact: info@tinkutara.com