Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 124595 by physicstutes last updated on 04/Dec/20

Given that  ω = e^(iθ) , θ≠ nπ, n ∈ N  show that    (1) ((ω^2 −1)/ω) = 2i sin θ   (2) (1 + ω)^n  = 2^n cos^n ((1/2)θ)e^((1/2)(inθ))

Giventhatω=eiθ,θnπ,nNshowthat(1)ω21ω=2isinθ(2)(1+ω)n=2ncosn(12θ)e12(inθ)

Answered by Ar Brandon last updated on 04/Dec/20

f(ω)=((ω^2 −1)/ω)=((e^(2iθ) −1)/e^(iθ) )=e^(iθ) −e^(−iθ)            =(cosθ+isinθ)−(cos(−θ)+isin(−θ))           =(cosθ+isinθ)−(cosθ−isinθ)           =2isinθ

f(ω)=ω21ω=e2iθ1eiθ=eiθeiθ=(cosθ+isinθ)(cos(θ)+isin(θ))=(cosθ+isinθ)(cosθisinθ)=2isinθ

Commented by physicstutes last updated on 04/Dec/20

thats great

thatsgreat

Answered by mnjuly1970 last updated on 04/Dec/20

1:ω^2 −1=(cos(2θ)+isin(2θ))−1=2isin(θ)cos(θ)−2sin^2 (θ)     =2isin(θ)[cos(θ)+isin(θ)]   ⇒((ω^2 −1)/ω)=2isin(θ)     corallary :Ω=∫_0 ^(π/2) ln(Im(((ω^2 −1)/(2w))))dθ=−(π/2)ln(2)✓

1:ω21=(cos(2θ)+isin(2θ))1=2isin(θ)cos(θ)2sin2(θ)=2isin(θ)[cos(θ)+isin(θ)]ω21ω=2isin(θ)corallary:Ω=0π2ln(Im(ω212w))dθ=π2ln(2)

Answered by Ar Brandon last updated on 04/Dec/20

f(ω)=(1+ω)^n =(1+cosθ+isinθ)^n            =(2cos^2 (θ/2)+2isin(θ/2)cos(θ/2))^n            =[2cos(θ/2)(cos(θ/2)+isin(θ/2))]^n            =2^n cos^n (θ/2)e^(i((nθ)/2))

f(ω)=(1+ω)n=(1+cosθ+isinθ)n=(2cos2θ2+2isinθ2cosθ2)n=[2cosθ2(cosθ2+isinθ2)]n=2ncosnθ2einθ2

Commented by Ar Brandon last updated on 04/Dec/20

1=cos^2 (θ/2)+sin^2 (θ/2)  cosθ=cos^2 (θ/2)−sin^2 (θ/2)  sinθ=2sin(θ/2)cos(θ/2)  cos(θ/2)+isin(θ/2)=e^(i(θ/2))

1=cos2θ2+sin2θ2cosθ=cos2θ2sin2θ2sinθ=2sinθ2cosθ2cosθ2+isinθ2=eiθ2

Answered by mnjuly1970 last updated on 04/Dec/20

2.(1+ω)^n =(1+cos(θ)+isin(θ))^n        =(2cos^2 ((θ/2))+2isin((θ/2))cos((θ/2)))^n   =2^n (cos^n ((θ/2)))(cos((θ/2))+isin((θ/2)))^n   =2^n cos^n ((θ/2))e^(i(((nθ)/2)))  ✓

2.(1+ω)n=(1+cos(θ)+isin(θ))n=(2cos2(θ2)+2isin(θ2)cos(θ2))n=2n(cosn(θ2))(cos(θ2)+isin(θ2))n=2ncosn(θ2)ei(nθ2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com