Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124632 by liberty last updated on 05/Dec/20

Calculate ∫_0 ^2  (√((2+x)/(2−x))) dx

$${Calculate}\:\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\:\sqrt{\frac{\mathrm{2}+{x}}{\mathrm{2}−{x}}}\:{dx}\: \\ $$

Answered by bemath last updated on 05/Dec/20

put x=2cos 2θ   I=∫_(π/4) ^0 (√((2+2cos 2θ)/(2−2cos 2θ))) (−4sin 2θ) dθ  I= 4∫_0 ^(π/4)  (√((1+cos 2θ)/(1−cos 2θ))) (2sin θ cos θ)dθ  I= 4∫_0 ^(π/4)  2cos^2 θ dθ  I=4 [ ((sin 2θ)/2) + θ ]_( 0) ^(π/4) = 4((1/2)+(π/4))  I=2+π

$${put}\:{x}=\mathrm{2cos}\:\mathrm{2}\theta\: \\ $$$${I}=\underset{\pi/\mathrm{4}} {\overset{\mathrm{0}} {\int}}\sqrt{\frac{\mathrm{2}+\mathrm{2cos}\:\mathrm{2}\theta}{\mathrm{2}−\mathrm{2cos}\:\mathrm{2}\theta}}\:\left(−\mathrm{4sin}\:\mathrm{2}\theta\right)\:{d}\theta \\ $$$${I}=\:\mathrm{4}\underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\:\sqrt{\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{2}\theta}{\mathrm{1}−\mathrm{cos}\:\mathrm{2}\theta}}\:\left(\mathrm{2sin}\:\theta\:\mathrm{cos}\:\theta\right){d}\theta \\ $$$${I}=\:\mathrm{4}\underset{\mathrm{0}} {\overset{\pi/\mathrm{4}} {\int}}\:\mathrm{2cos}\:^{\mathrm{2}} \theta\:{d}\theta \\ $$$${I}=\mathrm{4}\:\left[\:\frac{\mathrm{sin}\:\mathrm{2}\theta}{\mathrm{2}}\:+\:\theta\:\right]_{\:\mathrm{0}} ^{\pi/\mathrm{4}} =\:\mathrm{4}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\pi}{\mathrm{4}}\right) \\ $$$${I}=\mathrm{2}+\pi \\ $$

Answered by mathmax by abdo last updated on 05/Dec/20

A =∫_0 ^2 (√((2+x)/(2−x)))dx  we do the changement x=2cost ⇒  A =∫_(π/2) ^0 (√((1+cost)/(1−cost)))(−2sint)dt =2∫_0 ^(π/2) ((cos((t/2)))/(sin((t/2))))×2cos((t/2))sin((t/2))dt  =4 ∫_0 ^(π/2) cos^2 ((t/2))dt =4∫_0 ^(π/2) ((1+cost)/2)dt =2∫_0 ^(π/2) (1+cost)dt  =π+2[sint]_0 ^(π/2)  =π +2

$$\mathrm{A}\:=\int_{\mathrm{0}} ^{\mathrm{2}} \sqrt{\frac{\mathrm{2}+\mathrm{x}}{\mathrm{2}−\mathrm{x}}}\mathrm{dx}\:\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{x}=\mathrm{2cost}\:\Rightarrow \\ $$$$\mathrm{A}\:=\int_{\frac{\pi}{\mathrm{2}}} ^{\mathrm{0}} \sqrt{\frac{\mathrm{1}+\mathrm{cost}}{\mathrm{1}−\mathrm{cost}}}\left(−\mathrm{2sint}\right)\mathrm{dt}\:=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{cos}\left(\frac{\mathrm{t}}{\mathrm{2}}\right)}{\mathrm{sin}\left(\frac{\mathrm{t}}{\mathrm{2}}\right)}×\mathrm{2cos}\left(\frac{\mathrm{t}}{\mathrm{2}}\right)\mathrm{sin}\left(\frac{\mathrm{t}}{\mathrm{2}}\right)\mathrm{dt} \\ $$$$=\mathrm{4}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}^{\mathrm{2}} \left(\frac{\mathrm{t}}{\mathrm{2}}\right)\mathrm{dt}\:=\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{1}+\mathrm{cost}}{\mathrm{2}}\mathrm{dt}\:=\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+\mathrm{cost}\right)\mathrm{dt} \\ $$$$=\pi+\mathrm{2}\left[\mathrm{sint}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\pi\:+\mathrm{2} \\ $$

Answered by MJS_new last updated on 05/Dec/20

∫_0 ^2 (√((2+x)/(2−x)))dx=       [t=(√((2−x)/(2+x))) → dx=−(1/2)(x+2)^(3/2) (√(2−x))dt]  =8∫_0 ^1 (dt/((t^2 +1)^2 ))=[((4t)/(t^2 +1))+4arctan t]_0 ^1 =π+2

$$\underset{\mathrm{0}} {\overset{\mathrm{2}} {\int}}\sqrt{\frac{\mathrm{2}+{x}}{\mathrm{2}−{x}}}{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\sqrt{\frac{\mathrm{2}−{x}}{\mathrm{2}+{x}}}\:\rightarrow\:{dx}=−\frac{\mathrm{1}}{\mathrm{2}}\left({x}+\mathrm{2}\right)^{\mathrm{3}/\mathrm{2}} \sqrt{\mathrm{2}−{x}}{dt}\right] \\ $$$$=\mathrm{8}\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }=\left[\frac{\mathrm{4}{t}}{{t}^{\mathrm{2}} +\mathrm{1}}+\mathrm{4arctan}\:{t}\right]_{\mathrm{0}} ^{\mathrm{1}} =\pi+\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com