Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 124634 by bemath last updated on 05/Dec/20

 Solve the equation (∂^2 z/(∂x∂y)) = x^2 y  (1) particular solution which    z(x,0) = x^2  and z(1,y)=cos y

$$\:{Solve}\:{the}\:{equation}\:\frac{\partial^{\mathrm{2}} {z}}{\partial{x}\partial{y}}\:=\:{x}^{\mathrm{2}} {y} \\ $$$$\left(\mathrm{1}\right)\:{particular}\:{solution}\:{which}\: \\ $$$$\:{z}\left({x},\mathrm{0}\right)\:=\:{x}^{\mathrm{2}} \:{and}\:{z}\left(\mathrm{1},{y}\right)=\mathrm{cos}\:{y} \\ $$$$ \\ $$

Answered by liberty last updated on 05/Dec/20

 (•) (∂/∂x)((∂z/∂y)) = x^2 y . Integrating with respect to x  we find (∂z/∂y) = (1/3)x^3 y + F(y) ; F(y) is arbitrary  integrating again with respect to y   ⇒ z = (1/6)x^3 y^2 +H(y)+G(x)  where G(x) is arbitrary   since z(x,0) = x^2  we have x^2  = H(0)+G(x)   or G(x)=x^2 −H(0)   thus z=(1/6)x^3 y^2 +H(y)+x^2 −H(0)  since z(1,y)=cos y we have   cos y = (1/6)y^2 +H(y)+1−H(0) or  H(y)=cos y−(1/6)y^2 −1+H(0)  therefore z=(1/6)x^3 y^2 +cos y−(1/6)y^2 −1+H(0)+x^2 −H(0)  we get the required solution   z = (1/6)x^3 y^2 +cos y−(1/6)y^2 +x^2 −1.

$$\:\left(\bullet\right)\:\frac{\partial}{\partial{x}}\left(\frac{\partial{z}}{\partial{y}}\right)\:=\:{x}^{\mathrm{2}} {y}\:.\:{Integrating}\:{with}\:{respect}\:{to}\:{x} \\ $$$${we}\:{find}\:\frac{\partial{z}}{\partial{y}}\:=\:\frac{\mathrm{1}}{\mathrm{3}}{x}^{\mathrm{3}} {y}\:+\:{F}\left({y}\right)\:;\:{F}\left({y}\right)\:{is}\:{arbitrary} \\ $$$${integrating}\:{again}\:{with}\:{respect}\:{to}\:{y}\: \\ $$$$\Rightarrow\:{z}\:=\:\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} {y}^{\mathrm{2}} +{H}\left({y}\right)+{G}\left({x}\right) \\ $$$${where}\:{G}\left({x}\right)\:{is}\:{arbitrary}\: \\ $$$${since}\:{z}\left({x},\mathrm{0}\right)\:=\:{x}^{\mathrm{2}} \:{we}\:{have}\:{x}^{\mathrm{2}} \:=\:{H}\left(\mathrm{0}\right)+{G}\left({x}\right) \\ $$$$\:{or}\:{G}\left({x}\right)={x}^{\mathrm{2}} −{H}\left(\mathrm{0}\right)\: \\ $$$${thus}\:{z}=\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} {y}^{\mathrm{2}} +{H}\left({y}\right)+{x}^{\mathrm{2}} −{H}\left(\mathrm{0}\right) \\ $$$${since}\:{z}\left(\mathrm{1},{y}\right)=\mathrm{cos}\:{y}\:{we}\:{have}\: \\ $$$$\mathrm{cos}\:{y}\:=\:\frac{\mathrm{1}}{\mathrm{6}}{y}^{\mathrm{2}} +{H}\left({y}\right)+\mathrm{1}−{H}\left(\mathrm{0}\right)\:{or} \\ $$$${H}\left({y}\right)=\mathrm{cos}\:{y}−\frac{\mathrm{1}}{\mathrm{6}}{y}^{\mathrm{2}} −\mathrm{1}+{H}\left(\mathrm{0}\right) \\ $$$${therefore}\:{z}=\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} {y}^{\mathrm{2}} +\mathrm{cos}\:{y}−\frac{\mathrm{1}}{\mathrm{6}}{y}^{\mathrm{2}} −\mathrm{1}+{H}\left(\mathrm{0}\right)+{x}^{\mathrm{2}} −{H}\left(\mathrm{0}\right) \\ $$$${we}\:{get}\:{the}\:{required}\:{solution}\: \\ $$$${z}\:=\:\frac{\mathrm{1}}{\mathrm{6}}{x}^{\mathrm{3}} {y}^{\mathrm{2}} +\mathrm{cos}\:{y}−\frac{\mathrm{1}}{\mathrm{6}}{y}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{1}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com