Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124644 by benjo_mathlover last updated on 05/Dec/20

∫_(2/(√3)) ^2  ((cos (sec^(−1) x))/(x(√(x^2 −1)))) dx   ∫_( (√2)) ^2  ((sec^2 (sec^(−1) x))/(x(√(x^2 −1)))) dx

22/3cos(sec1x)xx21dx22sec2(sec1x)xx21dx

Answered by liberty last updated on 05/Dec/20

(1) ∫ _(2/( (√3))) ^( 2) ((cos (sec^(−1) x))/(x(√(x^2 −1)))) dx    put sec^(−1) x = j , x = sec j and dx = sec j tan j dj  where upper limit j=(π/3) and lower limit j=(π/6)  ∫ _(π/6) ^( π/3) ((cos j)/(sec j tan j)) (sec j tan j )dj  I= [ sin j ]_(π/6) ^(π/3)  = ((√3)/2) − (1/2) = (1/2)((√3)−1)

(1)223cos(sec1x)xx21dxputsec1x=j,x=secjanddx=secjtanjdjwhereupperlimitj=π3andlowerlimitj=π6π/3π/6cosjsecjtanj(secjtanj)djI=[sinj]π6π3=3212=12(31)

Answered by Dwaipayan Shikari last updated on 05/Dec/20

∫_(√2) ^2 ((sec^2 (sec^(−1) x))/(x(√(x^2 −1))))dx        sec^(−1) x =t⇒(1/(x(√(x^2 −1))))=(dt/dx)  =∫_(π/4) ^(π/3) sec^2 (t)dt = [tan(t)]_(π/4) ^(π/3) = (√3)−1

22sec2(sec1x)xx21dxsec1x=t1xx21=dtdx=π4π3sec2(t)dt=[tan(t)]π4π3=31

Terms of Service

Privacy Policy

Contact: info@tinkutara.com