Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 124740 by ajfour last updated on 05/Dec/20

Commented by ajfour last updated on 05/Dec/20

Find eq. of circle passing through  intersection points of  curves  y=x^2 −1  and  y=(c/x) ;   (c < (2/(3(√3))))

$${Find}\:{eq}.\:{of}\:{circle}\:{passing}\:{through} \\ $$$${intersection}\:{points}\:{of}\:\:{curves} \\ $$$${y}={x}^{\mathrm{2}} −\mathrm{1}\:\:{and}\:\:{y}=\frac{{c}}{{x}}\:;\:\:\:\left({c}\:<\:\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}\right) \\ $$

Answered by ajfour last updated on 05/Dec/20

y=x^2 −1  y=(c/x)  let roots of  x^2 −1=(c/x)   be  p, q, r  p+q+r=0  pq+qr+rp=−1  pqr=c  (y−k)^2 +(x−h)^2 =R^( 2)   (x^2 −1−k)^2 +(x−h)^2 =R^( 2)   p(q^2 +r^2 −2−k)+p+2h=0  ⇒  p(p^2 −((2c)/p)−2−k)+p+2h=0  ⇒ 2h−(k+2)p+2p−c=0   ....(I)  ⇒ Σ  gives  ⇒    h=(c/2)  And considering (I) again  with  h=c  ⇒   k=0  ⇒  R^( 2)  = (x^2 −1)^2 +(x−(c/2))^2   ⇒  R^( 2) = 1+(c^2 /4)  Hence eq. of circle is    (x−(c/2))^2 +y^2 =1+(c^2 /4)  example:  For   c=(1/3)  , the curves are  y=x^2 −1  ,  y=(1/(3x)) ,  and the circle  (x−(1/6))^2 +y^2 =((37)/(36))   ★

$${y}={x}^{\mathrm{2}} −\mathrm{1} \\ $$$${y}=\frac{{c}}{{x}} \\ $$$${let}\:{roots}\:{of}\:\:{x}^{\mathrm{2}} −\mathrm{1}=\frac{{c}}{{x}}\:\:\:{be}\:\:{p},\:{q},\:{r} \\ $$$${p}+{q}+{r}=\mathrm{0} \\ $$$${pq}+{qr}+{rp}=−\mathrm{1} \\ $$$${pqr}={c} \\ $$$$\left({y}−{k}\right)^{\mathrm{2}} +\left({x}−{h}\right)^{\mathrm{2}} ={R}^{\:\mathrm{2}} \\ $$$$\left({x}^{\mathrm{2}} −\mathrm{1}−{k}\right)^{\mathrm{2}} +\left({x}−{h}\right)^{\mathrm{2}} ={R}^{\:\mathrm{2}} \\ $$$${p}\left({q}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}−{k}\right)+{p}+\mathrm{2}{h}=\mathrm{0} \\ $$$$\Rightarrow\:\:{p}\left({p}^{\mathrm{2}} −\frac{\mathrm{2}{c}}{{p}}−\mathrm{2}−{k}\right)+{p}+\mathrm{2}{h}=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{2}{h}−\left({k}+\mathrm{2}\right){p}+\mathrm{2}{p}−{c}=\mathrm{0}\:\:\:....\left({I}\right) \\ $$$$\Rightarrow\:\Sigma\:\:{gives} \\ $$$$\Rightarrow\:\:\:\:{h}=\frac{{c}}{\mathrm{2}} \\ $$$${And}\:{considering}\:\left({I}\right)\:{again} \\ $$$${with}\:\:{h}={c}\:\:\Rightarrow\:\:\:{k}=\mathrm{0} \\ $$$$\Rightarrow\:\:{R}^{\:\mathrm{2}} \:=\:\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} +\left({x}−\frac{{c}}{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{R}^{\:\mathrm{2}} =\:\mathrm{1}+\frac{{c}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${Hence}\:{eq}.\:{of}\:{circle}\:{is} \\ $$$$\:\:\left({x}−\frac{{c}}{\mathrm{2}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}+\frac{{c}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${example}: \\ $$$${For}\:\:\:{c}=\frac{\mathrm{1}}{\mathrm{3}}\:\:,\:{the}\:{curves}\:{are} \\ $$$${y}={x}^{\mathrm{2}} −\mathrm{1}\:\:,\:\:{y}=\frac{\mathrm{1}}{\mathrm{3}{x}}\:,\:\:{and}\:{the}\:{circle} \\ $$$$\left({x}−\frac{\mathrm{1}}{\mathrm{6}}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} =\frac{\mathrm{37}}{\mathrm{36}}\:\:\:\bigstar \\ $$

Commented by ajfour last updated on 05/Dec/20

Commented by mr W last updated on 05/Dec/20

fantastic!

$${fantastic}! \\ $$

Commented by ajfour last updated on 06/Dec/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com