Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 124743 by ajfour last updated on 05/Dec/20

Commented by ajfour last updated on 05/Dec/20

Given  arc length AB=1, find  maximum radius of smaller  circles.

$${Given}\:\:{arc}\:{length}\:{AB}=\mathrm{1},\:{find} \\ $$$${maximum}\:{radius}\:{of}\:{smaller} \\ $$$${circles}. \\ $$

Answered by mr W last updated on 05/Dec/20

Commented by mr W last updated on 05/Dec/20

2θR=1  θ=(1/(2R))  (R−r)^2 =r^2 +(r+R cos θ)^2   r^2 +2R(1+cos θ)r−R^2 (1−cos^2  θ)=0  r=R[(√(2(1+cos θ)))−(1+cos θ)]  r=(1/(2θ))[(√(2(1+cos θ)))−(1+cos θ)]  at θ=(π/2):  r_(max) =(((√2)−1)/π)

$$\mathrm{2}\theta{R}=\mathrm{1} \\ $$$$\theta=\frac{\mathrm{1}}{\mathrm{2}{R}} \\ $$$$\left({R}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} +\left({r}+{R}\:\mathrm{cos}\:\theta\right)^{\mathrm{2}} \\ $$$${r}^{\mathrm{2}} +\mathrm{2}{R}\left(\mathrm{1}+\mathrm{cos}\:\theta\right){r}−{R}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\theta\right)=\mathrm{0} \\ $$$${r}={R}\left[\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)}−\left(\mathrm{1}+\mathrm{cos}\:\theta\right)\right] \\ $$$${r}=\frac{\mathrm{1}}{\mathrm{2}\theta}\left[\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)}−\left(\mathrm{1}+\mathrm{cos}\:\theta\right)\right] \\ $$$${at}\:\theta=\frac{\pi}{\mathrm{2}}: \\ $$$${r}_{{max}} =\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\pi} \\ $$

Commented by ajfour last updated on 05/Dec/20

sir how did you confirm, i tried grapher, it draws weird graph...

Commented by mr W last updated on 06/Dec/20

we got the same function for r  in terms of θ:  r=(((√(2(1+cos θ)))−(1+cos θ))/(2θ))  for 0<θ≤π/2 the function is  increasing, therefore r_(max)  is at θ=(π/2).  because segment is defined for  0<θ≤π/2.

$${we}\:{got}\:{the}\:{same}\:{function}\:{for}\:{r} \\ $$$${in}\:{terms}\:{of}\:\theta: \\ $$$${r}=\frac{\sqrt{\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\theta\right)}−\left(\mathrm{1}+\mathrm{cos}\:\theta\right)}{\mathrm{2}\theta} \\ $$$${for}\:\mathrm{0}<\theta\leqslant\pi/\mathrm{2}\:{the}\:{function}\:{is} \\ $$$${increasing},\:{therefore}\:{r}_{{max}} \:{is}\:{at}\:\theta=\frac{\pi}{\mathrm{2}}. \\ $$$${because}\:{segment}\:{is}\:{defined}\:{for} \\ $$$$\mathrm{0}<\theta\leqslant\pi/\mathrm{2}. \\ $$

Commented by mr W last updated on 05/Dec/20

Commented by ajfour last updated on 05/Dec/20

(π/2)≈ 1.57079

$$\frac{\pi}{\mathrm{2}}\approx\:\mathrm{1}.\mathrm{57079}\: \\ $$

Commented by mr W last updated on 06/Dec/20

that′s what i meant. we can not get  the mathematical maximum at  θ=1.645, because that is behind   θ=(π/2), the possible segment.  the actual maximum we can reach  is at θ=(π/2): r_(max) =(((√2)−1)/π) which is  less than 0.1322.

$${that}'{s}\:{what}\:{i}\:{meant}.\:{we}\:{can}\:{not}\:{get} \\ $$$${the}\:{mathematical}\:{maximum}\:{at} \\ $$$$\theta=\mathrm{1}.\mathrm{645},\:{because}\:{that}\:{is}\:{behind}\: \\ $$$$\theta=\frac{\pi}{\mathrm{2}},\:{the}\:{possible}\:{segment}. \\ $$$${the}\:{actual}\:{maximum}\:{we}\:{can}\:{reach} \\ $$$${is}\:{at}\:\theta=\frac{\pi}{\mathrm{2}}:\:{r}_{{max}} =\frac{\sqrt{\mathrm{2}}−\mathrm{1}}{\pi}\:{which}\:{is} \\ $$$${less}\:{than}\:\mathrm{0}.\mathrm{1322}. \\ $$

Commented by ajfour last updated on 06/Dec/20

I guess, i follow now, Sir!  you make it quite clear, Thanks.

$${I}\:{guess},\:{i}\:{follow}\:{now},\:{Sir}! \\ $$$${you}\:{make}\:{it}\:{quite}\:{clear},\:\mathcal{T}{hanks}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com