Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 124821 by ajfour last updated on 06/Dec/20

Commented by ajfour last updated on 06/Dec/20

If the circles in red and blue have  equal radii, find AB.

$${If}\:{the}\:{circles}\:{in}\:{red}\:{and}\:{blue}\:{have} \\ $$$${equal}\:{radii},\:{find}\:{AB}. \\ $$

Commented by ajfour last updated on 06/Dec/20

Answered by mr W last updated on 06/Dec/20

Commented by mr W last updated on 06/Dec/20

R=1=radius of semicircle  let λ=(r/R)  cos θ=((R−2r)/R)=1−2λ  tan α=(r/(R+(√((R−r)^2 −r^2 ))))=(λ/(1+(√(1−2λ))))  2α=(π/2)−θ  tan 2α=(1/(tan θ))  ((2×(λ/(1+(√(1−2λ)))))/(1−((λ/(1+(√(1−2λ)))))^2 ))=((1−2λ)/( (√(1−(1−2λ)^2 ))))  ((2λ(1+(√(1−2λ))))/((1+(√(1−2λ)))^2 −λ^2 ))=((1−2λ)/( (√(1−(1−2λ)^2 ))))  ⇒λ≈0.3129  sin β=(r/(R−r))=(λ/(1−λ))  AB=2(R−r)sin ((π−θ−β)/2)  ((AB)/R)=2(1−λ)cos ((θ+β)/2)  =2(1−λ)cos (1/2)[cos^(−1) (1−2λ)+sin^(−1) ((λ/(1−λ)))]  ≈0.9274

$${R}=\mathrm{1}={radius}\:{of}\:{semicircle} \\ $$$${let}\:\lambda=\frac{{r}}{{R}} \\ $$$$\mathrm{cos}\:\theta=\frac{{R}−\mathrm{2}{r}}{{R}}=\mathrm{1}−\mathrm{2}\lambda \\ $$$$\mathrm{tan}\:\alpha=\frac{{r}}{{R}+\sqrt{\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }}=\frac{\lambda}{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{2}\lambda}} \\ $$$$\mathrm{2}\alpha=\frac{\pi}{\mathrm{2}}−\theta \\ $$$$\mathrm{tan}\:\mathrm{2}\alpha=\frac{\mathrm{1}}{\mathrm{tan}\:\theta} \\ $$$$\frac{\mathrm{2}×\frac{\lambda}{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{2}\lambda}}}{\mathrm{1}−\left(\frac{\lambda}{\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{2}\lambda}}\right)^{\mathrm{2}} }=\frac{\mathrm{1}−\mathrm{2}\lambda}{\:\sqrt{\mathrm{1}−\left(\mathrm{1}−\mathrm{2}\lambda\right)^{\mathrm{2}} }} \\ $$$$\frac{\mathrm{2}\lambda\left(\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{2}\lambda}\right)}{\left(\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{2}\lambda}\right)^{\mathrm{2}} −\lambda^{\mathrm{2}} }=\frac{\mathrm{1}−\mathrm{2}\lambda}{\:\sqrt{\mathrm{1}−\left(\mathrm{1}−\mathrm{2}\lambda\right)^{\mathrm{2}} }} \\ $$$$\Rightarrow\lambda\approx\mathrm{0}.\mathrm{3129} \\ $$$$\mathrm{sin}\:\beta=\frac{{r}}{{R}−{r}}=\frac{\lambda}{\mathrm{1}−\lambda} \\ $$$${AB}=\mathrm{2}\left({R}−{r}\right)\mathrm{sin}\:\frac{\pi−\theta−\beta}{\mathrm{2}} \\ $$$$\frac{{AB}}{{R}}=\mathrm{2}\left(\mathrm{1}−\lambda\right)\mathrm{cos}\:\frac{\theta+\beta}{\mathrm{2}} \\ $$$$=\mathrm{2}\left(\mathrm{1}−\lambda\right)\mathrm{cos}\:\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{cos}^{−\mathrm{1}} \left(\mathrm{1}−\mathrm{2}\lambda\right)+\mathrm{sin}^{−\mathrm{1}} \left(\frac{\lambda}{\mathrm{1}−\lambda}\right)\right] \\ $$$$\approx\mathrm{0}.\mathrm{9274} \\ $$

Commented by MJS_new last updated on 06/Dec/20

btw. λ is the real solution of  λ^3 −5λ^2 +((57)/4)λ−4=0  λ=(5/3)+(1/6)((−1133+120(√(114))))^(1/3) −(1/6)((1133+120(√(114))))^(1/3)   but this doesn′t make anything better...

$$\mathrm{btw}.\:\lambda\:\mathrm{is}\:\mathrm{the}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{of} \\ $$$$\lambda^{\mathrm{3}} −\mathrm{5}\lambda^{\mathrm{2}} +\frac{\mathrm{57}}{\mathrm{4}}\lambda−\mathrm{4}=\mathrm{0} \\ $$$$\lambda=\frac{\mathrm{5}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{6}}\sqrt[{\mathrm{3}}]{−\mathrm{1133}+\mathrm{120}\sqrt{\mathrm{114}}}−\frac{\mathrm{1}}{\mathrm{6}}\sqrt[{\mathrm{3}}]{\mathrm{1133}+\mathrm{120}\sqrt{\mathrm{114}}} \\ $$$$\mathrm{but}\:\mathrm{this}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{make}\:\mathrm{anything}\:\mathrm{better}... \\ $$

Commented by mr W last updated on 06/Dec/20

wow! i stoped to consider if the  equation can be simplified further.  you showed an exact solution exists.  thanks!

$${wow}!\:{i}\:{stoped}\:{to}\:{consider}\:{if}\:{the} \\ $$$${equation}\:{can}\:{be}\:{simplified}\:{further}. \\ $$$${you}\:{showed}\:{an}\:{exact}\:{solution}\:{exists}. \\ $$$${thanks}! \\ $$

Commented by MJS_new last updated on 06/Dec/20

((2λ(1+(√(1−2λ))))/((1+(√(1−2λ)))^2 −λ^2 ))=((1−2λ)/( (√(1−(1−2λ)^2 ))))  let t=(√(1−2x))∧t≥0 ⇔ x=((1−t^2 )/2)  ((4(t−1))/((t−3)(t+1)))=(t^2 /( (√(1−t^4 ))))  squaring and transforming  (t+1)(t^2 −t+2)^2 (t^3 −3t^2 +8t−4)=0  as t≥0  t^3 −3t^2 +8t−4=0  and from here it′s easy

$$\frac{\mathrm{2}\lambda\left(\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{2}\lambda}\right)}{\left(\mathrm{1}+\sqrt{\mathrm{1}−\mathrm{2}\lambda}\right)^{\mathrm{2}} −\lambda^{\mathrm{2}} }=\frac{\mathrm{1}−\mathrm{2}\lambda}{\:\sqrt{\mathrm{1}−\left(\mathrm{1}−\mathrm{2}\lambda\right)^{\mathrm{2}} }} \\ $$$$\mathrm{let}\:{t}=\sqrt{\mathrm{1}−\mathrm{2}{x}}\wedge{t}\geqslant\mathrm{0}\:\Leftrightarrow\:{x}=\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{\mathrm{4}\left({t}−\mathrm{1}\right)}{\left({t}−\mathrm{3}\right)\left({t}+\mathrm{1}\right)}=\frac{{t}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−{t}^{\mathrm{4}} }} \\ $$$$\mathrm{squaring}\:\mathrm{and}\:\mathrm{transforming} \\ $$$$\left({t}+\mathrm{1}\right)\left({t}^{\mathrm{2}} −{t}+\mathrm{2}\right)^{\mathrm{2}} \left({t}^{\mathrm{3}} −\mathrm{3}{t}^{\mathrm{2}} +\mathrm{8}{t}−\mathrm{4}\right)=\mathrm{0} \\ $$$$\mathrm{as}\:{t}\geqslant\mathrm{0} \\ $$$${t}^{\mathrm{3}} −\mathrm{3}{t}^{\mathrm{2}} +\mathrm{8}{t}−\mathrm{4}=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{from}\:\mathrm{here}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy} \\ $$

Commented by ajfour last updated on 06/Dec/20

Thanks mrW Sir for solving,   N  MjS Sir for interfering!

$${Thanks}\:{mrW}\:{Sir}\:{for}\:{solving},\: \\ $$$${N}\:\:{MjS}\:{Sir}\:{for}\:{interfering}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com