Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 124924 by bemath last updated on 07/Dec/20

 What should the dimensions be  of a cylinder so that for a given volume   v its total surface S minimum ?

$$\:{What}\:{should}\:{the}\:{dimensions}\:{be} \\ $$$${of}\:{a}\:{cylinder}\:{so}\:{that}\:{for}\:{a}\:{given}\:{volume}\: \\ $$$${v}\:{its}\:{total}\:{surface}\:{S}\:{minimum}\:?\: \\ $$

Commented by liberty last updated on 07/Dec/20

Denoting by r the radius of the base of the  cylinder and by h the altitude , we have    S = 2πr^2  + 2πrh and the volume is given   v = πr^2 h ; whence h = (v/(πr^2 ))  substituting this expression of h into the  formula for S , give S=2(πr^2 +(v/r)) ; where 0<r<∞   (dS/dr) = 2(2πr−(v/r^2 )) = 0 ⇒ r_1  = ((v/(2π)))^(1/3)   ((d^2 S/dr^2 ))_(r=r_1 ) = 2(2π+((2v)/r^3 ))_(r=r_1 ) > 0   Thus at the point r=r_1  the function S has  a minimum . Noticing that lim_(r→0)  S=∞ and  lim_(r→∞)  S = ∞, we arrive at conclusion that  at r = r_1 = ((v/(2π)))^(1/3)  then h = (v/(πr^2 ))= 2((v/(2π)))^(1/3)  = 2r

$${Denoting}\:{by}\:{r}\:{the}\:{radius}\:{of}\:{the}\:{base}\:{of}\:{the} \\ $$$${cylinder}\:{and}\:{by}\:{h}\:{the}\:{altitude}\:,\:{we}\:{have}\: \\ $$$$\:{S}\:=\:\mathrm{2}\pi{r}^{\mathrm{2}} \:+\:\mathrm{2}\pi{rh}\:{and}\:{the}\:{volume}\:{is}\:{given}\: \\ $$$${v}\:=\:\pi{r}^{\mathrm{2}} {h}\:;\:{whence}\:{h}\:=\:\frac{{v}}{\pi{r}^{\mathrm{2}} } \\ $$$${substituting}\:{this}\:{expression}\:{of}\:{h}\:{into}\:{the} \\ $$$${formula}\:{for}\:{S}\:,\:{give}\:{S}=\mathrm{2}\left(\pi{r}^{\mathrm{2}} +\frac{{v}}{{r}}\right)\:;\:{where}\:\mathrm{0}<{r}<\infty \\ $$$$\:\frac{{dS}}{{dr}}\:=\:\mathrm{2}\left(\mathrm{2}\pi{r}−\frac{{v}}{{r}^{\mathrm{2}} }\right)\:=\:\mathrm{0}\:\Rightarrow\:{r}_{\mathrm{1}} \:=\:\sqrt[{\mathrm{3}}]{\frac{{v}}{\mathrm{2}\pi}} \\ $$$$\left(\frac{{d}^{\mathrm{2}} {S}}{{dr}^{\mathrm{2}} }\right)_{{r}={r}_{\mathrm{1}} } =\:\mathrm{2}\left(\mathrm{2}\pi+\frac{\mathrm{2}{v}}{{r}^{\mathrm{3}} }\right)_{{r}={r}_{\mathrm{1}} } >\:\mathrm{0}\: \\ $$$${Thus}\:{at}\:{the}\:{point}\:{r}={r}_{\mathrm{1}} \:{the}\:{function}\:{S}\:{has} \\ $$$${a}\:{minimum}\:.\:{Noticing}\:{that}\:\underset{{r}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{S}=\infty\:{and} \\ $$$$\underset{{r}\rightarrow\infty} {\mathrm{lim}}\:{S}\:=\:\infty,\:{we}\:{arrive}\:{at}\:{conclusion}\:{that} \\ $$$${at}\:{r}\:=\:{r}_{\mathrm{1}} =\:\sqrt[{\mathrm{3}}]{\frac{{v}}{\mathrm{2}\pi}}\:{then}\:{h}\:=\:\frac{{v}}{\pi{r}^{\mathrm{2}} }=\:\mathrm{2}\sqrt[{\mathrm{3}}]{\frac{{v}}{\mathrm{2}\pi}}\:=\:\mathrm{2}{r} \\ $$$$ \\ $$

Answered by som(math1967) last updated on 07/Dec/20

let radius=r height=h  v=πr^2 h ⇒h=(v/(πr^2 ))  S=2πrh+2πr^2   S=((2v)/r) +2πr^2    (dS/dr)=−((2v)/r^2 ) +4πr  (d^2 S/dr^2 )=((4v)/r^3 ) +4π  ∴(d^2 S/dr^2 )>0 ∴S minimum for  (dS/dr)=0  ∴−((2v)/r^2 )+4πr=0  4πr^3 =2v  2πr^3 =πr^2 h  2r=h  ∴S is minimum when  Height is eqal to diameter  or  r:h=1:2

$$\mathrm{let}\:\mathrm{radius}=\mathrm{r}\:\mathrm{height}=\mathrm{h} \\ $$$${v}=\pi\mathrm{r}^{\mathrm{2}} \mathrm{h}\:\Rightarrow\mathrm{h}=\frac{{v}}{\pi\mathrm{r}^{\mathrm{2}} } \\ $$$$\mathrm{S}=\mathrm{2}\pi\mathrm{rh}+\mathrm{2}\pi\mathrm{r}^{\mathrm{2}} \\ $$$$\mathrm{S}=\frac{\mathrm{2}{v}}{\mathrm{r}}\:+\mathrm{2}\pi\mathrm{r}^{\mathrm{2}} \: \\ $$$$\frac{\mathrm{dS}}{\mathrm{dr}}=−\frac{\mathrm{2}{v}}{\mathrm{r}^{\mathrm{2}} }\:+\mathrm{4}\pi\mathrm{r} \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{S}}{\mathrm{dr}^{\mathrm{2}} }=\frac{\mathrm{4}{v}}{\mathrm{r}^{\mathrm{3}} }\:+\mathrm{4}\pi \\ $$$$\therefore\frac{\mathrm{d}^{\mathrm{2}} \mathrm{S}}{\mathrm{dr}^{\mathrm{2}} }>\mathrm{0}\:\therefore\mathrm{S}\:\mathrm{minimum}\:\mathrm{for} \\ $$$$\frac{\mathrm{dS}}{\mathrm{dr}}=\mathrm{0} \\ $$$$\therefore−\frac{\mathrm{2}{v}}{\mathrm{r}^{\mathrm{2}} }+\mathrm{4}\pi\mathrm{r}=\mathrm{0} \\ $$$$\mathrm{4}\pi\mathrm{r}^{\mathrm{3}} =\mathrm{2}{v} \\ $$$$\mathrm{2}\pi\mathrm{r}^{\mathrm{3}} =\pi\mathrm{r}^{\mathrm{2}} \mathrm{h} \\ $$$$\mathrm{2r}=\mathrm{h} \\ $$$$\therefore\mathrm{S}\:\mathrm{is}\:\mathrm{minimum}\:\mathrm{when} \\ $$$$\mathrm{Height}\:\mathrm{is}\:\mathrm{eqal}\:\mathrm{to}\:\mathrm{diameter} \\ $$$$\mathrm{or}\:\:\mathrm{r}:\mathrm{h}=\mathrm{1}:\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com