Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124957 by Study last updated on 07/Dec/20

Commented by Study last updated on 07/Dec/20

please help me??

$${please}\:{help}\:{me}?? \\ $$

Answered by Dwaipayan Shikari last updated on 07/Dec/20

∫_0 ^(π/2) ((tanx))^(1/4)  dx  =∫_0 ^(π/2) sin^(1/4) x cos^(−(1/4)) x dx        sin^2 x=t⇒sin2x=(dt/dx)  =(1/2)∫_0 ^1 t^((1/8)−(1/2)) (1−t)^(−(1/8)−(1/2))  dt    =(1/2).((Γ((1/8)+(1/2))Γ((1/2)−(1/8)))/(Γ(1)))  =((Γ((5/8))Γ((3/8)))/2)=(π/(2sin(((3π)/8))))=(π/(2cos(π/8)))=(π/(((√(2+(√2))))))

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \sqrt[{\mathrm{4}}]{{tanx}}\:{dx} \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\frac{\mathrm{1}}{\mathrm{4}}} {x}\:{cos}^{−\frac{\mathrm{1}}{\mathrm{4}}} {x}\:{dx}\:\:\:\:\:\:\:\:{sin}^{\mathrm{2}} {x}={t}\Rightarrow{sin}\mathrm{2}{x}=\frac{{dt}}{{dx}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\frac{\mathrm{1}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−{t}\right)^{−\frac{\mathrm{1}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{2}}} \:{dt}\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}.\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{8}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{8}}\right)}{\Gamma\left(\mathrm{1}\right)} \\ $$$$=\frac{\Gamma\left(\frac{\mathrm{5}}{\mathrm{8}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{8}}\right)}{\mathrm{2}}=\frac{\pi}{\mathrm{2}{sin}\left(\frac{\mathrm{3}\pi}{\mathrm{8}}\right)}=\frac{\pi}{\mathrm{2}{cos}\frac{\pi}{\mathrm{8}}}=\frac{\pi}{\left(\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}\right)} \\ $$

Commented by mathmax by abdo last updated on 07/Dec/20

I=∫_0 ^(π/2)  ^4 (√(tanx))dx we do the changement (tanx)^(1/4) =t ⇒tanx=t^4  ⇒  x=arctan(t^4 ) ⇒ I =∫_0 ^∞    ((t×(4t^3 ))/(1+t^8 ))dt =4∫_0 ^∞   (t^4 /(1+t^8 ))dt  =_(t=u^(1/8) )    4 ∫_0 ^∞   (u^(1/2) /(1+u))×(1/8) u^((1/8)−1)  du =(1/2)∫_0 ^∞  (u^((1/2)+(1/8)−1) /(1+u))du  =(1/2)∫_0 ^∞   (u^((5/8)−1) /(1+u))du =(1/2)×(π/(sin(((5π)/8))))=(π/(2sin((π/2)+(π/8))))  =(π/(2cos((π/8))))=(π/(2×((√(2+(√2)))/2))) =(π/( (√(2+(√2))))) ⇒I=(π/( (√(2+(√2)))))

$$\mathrm{I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:^{\mathrm{4}} \sqrt{\mathrm{tanx}}\mathrm{dx}\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\left(\mathrm{tanx}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} =\mathrm{t}\:\Rightarrow\mathrm{tanx}=\mathrm{t}^{\mathrm{4}} \:\Rightarrow \\ $$$$\mathrm{x}=\mathrm{arctan}\left(\mathrm{t}^{\mathrm{4}} \right)\:\Rightarrow\:\mathrm{I}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{t}×\left(\mathrm{4t}^{\mathrm{3}} \right)}{\mathrm{1}+\mathrm{t}^{\mathrm{8}} }\mathrm{dt}\:=\mathrm{4}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{t}^{\mathrm{4}} }{\mathrm{1}+\mathrm{t}^{\mathrm{8}} }\mathrm{dt} \\ $$$$=_{\mathrm{t}=\mathrm{u}^{\frac{\mathrm{1}}{\mathrm{8}}} } \:\:\:\mathrm{4}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{u}^{\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}+\mathrm{u}}×\frac{\mathrm{1}}{\mathrm{8}}\:\mathrm{u}^{\frac{\mathrm{1}}{\mathrm{8}}−\mathrm{1}} \:\mathrm{du}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\frac{\mathrm{u}^{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{8}}−\mathrm{1}} }{\mathrm{1}+\mathrm{u}}\mathrm{du} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{u}^{\frac{\mathrm{5}}{\mathrm{8}}−\mathrm{1}} }{\mathrm{1}+\mathrm{u}}\mathrm{du}\:=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi}{\mathrm{sin}\left(\frac{\mathrm{5}\pi}{\mathrm{8}}\right)}=\frac{\pi}{\mathrm{2sin}\left(\frac{\pi}{\mathrm{2}}+\frac{\pi}{\mathrm{8}}\right)} \\ $$$$=\frac{\pi}{\mathrm{2cos}\left(\frac{\pi}{\mathrm{8}}\right)}=\frac{\pi}{\mathrm{2}×\frac{\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}{\mathrm{2}}}\:=\frac{\pi}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}}\:\Rightarrow\mathrm{I}=\frac{\pi}{\:\sqrt{\mathrm{2}+\sqrt{\mathrm{2}}}} \\ $$

Commented by Study last updated on 07/Dec/20

why we chose border than 0 to ∞

$${why}\:{we}\:{chose}\:{border}\:{than}\:\mathrm{0}\:{to}\:\infty \\ $$

Commented by Study last updated on 07/Dec/20

why (1/2)∫(u^((5/8)−1) /(1+u))du=(1/2)×(π/(sin(((5π)/8))))

$${why}\:\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{u}^{\frac{\mathrm{5}}{\mathrm{8}}−\mathrm{1}} }{\mathrm{1}+{u}}{du}=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi}{{sin}\left(\frac{\mathrm{5}\pi}{\mathrm{8}}\right)} \\ $$

Commented by Dwaipayan Shikari last updated on 07/Dec/20

∫_0 ^∞ (u^n /(1+u))du   take (u/(1+u))=t⇒(1/((1+u)^2 ))=(dt/du)  =∫_0 ^1 t^((1/n)−1) (1−t)^(−(1/n)) dt =Γ((1/n))Γ(1−(1/n))=(π/(sin((π/n))))

$$\int_{\mathrm{0}} ^{\infty} \frac{{u}^{{n}} }{\mathrm{1}+{u}}{du}\:\:\:{take}\:\frac{{u}}{\mathrm{1}+{u}}={t}\Rightarrow\frac{\mathrm{1}}{\left(\mathrm{1}+{u}\right)^{\mathrm{2}} }=\frac{{dt}}{{du}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} \left(\mathrm{1}−{t}\right)^{−\frac{\mathrm{1}}{{n}}} {dt}\:=\Gamma\left(\frac{\mathrm{1}}{{n}}\right)\Gamma\left(\mathrm{1}−\frac{\mathrm{1}}{{n}}\right)=\frac{\pi}{{sin}\left(\frac{\pi}{{n}}\right)} \\ $$

Commented by Bird last updated on 07/Dec/20

∫_0 ^∞  (t^(a−1) /(1+t))dt =(π/(sin(πa))) with0<a<1  this result is proved see the platform

$$\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}}{dt}\:=\frac{\pi}{{sin}\left(\pi{a}\right)}\:{with}\mathrm{0}<{a}<\mathrm{1} \\ $$$${this}\:{result}\:{is}\:{proved}\:{see}\:{the}\:{platform} \\ $$

Commented by Study last updated on 08/Dec/20

ans me please???

$${ans}\:{me}\:{please}??? \\ $$

Commented by Study last updated on 08/Dec/20

ans me please??

$${ans}\:{me}\:{please}?? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com