Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 124979 by mathmax by abdo last updated on 07/Dec/20

let f(x)=arctan(x^n ) with n natural  1) find f^((n)) (0) and f^((n)) (1)  2)developp f at integr serie  3)calculte  ∫_0 ^∞  ((f(x))/x^n )dx with n≥2

letf(x)=arctan(xn)withnnatural1)findf(n)(0)andf(n)(1)2)developpfatintegrserie3)calculte0f(x)xndxwithn2

Answered by Dwaipayan Shikari last updated on 07/Dec/20

f(x)=tan^(−1) x^n   ∫_0 ^∞ ((tan^(−1) x^n )/x^n )dx=−[n((tan^(−1) x^n )/x^(n−1) )]_0 ^∞ +n^2 ∫_0 ^∞ x^(1−n) (x^(n−1) /(1+x^(2n) )) dx  =n^2 ∫_0 ^∞ (dx/(1+x^(2n) ))              x^(2n) =t⇒2n x^(2n−1) =(dt/dx)  =(n/2)∫_0 ^∞ x^(1−2n) (1/(1+t))dt=(n/2)∫_0 ^∞ t^((1/(2n))−1) (1/(1+t))dt             (t/(1+t))=u⇒(1/((1+t)^2 ))=(du/dt)  =(n/2)∫_0 ^1 (u^((1/(2n))−1) /((1−u)^((1/(2n))−1) ))(1−u)^(−1) du                           (u/(1−u))=t  =(n/2)∫_0 ^1 u^((1/(2n))−1) (1−u)^(−(1/(2n)))  du  =(n/2)Γ((1/(2n)))Γ(1−(1/(2n)))=(n/2).(π/(sin((π/(2n)))))

f(x)=tan1xn0tan1xnxndx=[ntan1xnxn1]0+n20x1nxn11+x2ndx=n20dx1+x2nx2n=t2nx2n1=dtdx=n20x12n11+tdt=n20t12n111+tdtt1+t=u1(1+t)2=dudt=n201u12n1(1u)12n1(1u)1duu1u=t=n201u12n1(1u)12ndu=n2Γ(12n)Γ(112n)=n2.πsin(π2n)

Answered by mathmax by abdo last updated on 07/Dec/20

1) f(x)=arctan(x^n ) ⇒f^((1)) (x)=((nx^(n−1) )/(1+x^(2n) )) ⇒  f^((p)) (x)=n((x^(n−1) /(x^(2n) +1)))^((p−1))   with p≥1  let decompose F(x) =(x^(n−1) /(x^(2n) +1))  z^(2n) +1=0 ⇒z^(2n)  =e^(i(2k+1)π)  ⇒z_k =e^(i(((2k+1)π)/(2n)))   and k∈[[0,2n−1]] ⇒  F(x)=(x^(n−1) /(Π_(k=0) ^(2n−1) (x−z_k ))) =Σ_(k=0) ^(2n−1)  (a_k /(x−z_k ))  we have  a_k =(z_k ^(n−1) /(2n z_k ^(2n−1) )) =(1/(2n))×(z_k ^n /((−1)))=−(1/(2n))z_k ^n  =−(1/(2n))×e^(i(((2k+1)π)/2))   =−(1/(2n)) e^(ikπ)  e^((iπ)/2)  =−(1/(2n))(−1)^k i=((i(−1)^k )/(2n)) ⇒F(x)=(i/(2n))Σ_(k=0) ^(2n−1)  (((−1)^k )/(x−z_k )) ⇒  f^((p)) (x)=(i/2)Σ_(k=0) ^(2n−1) (−1)^k {(1/(x−z_k ))}^((p−1))   =(i/2)Σ_(k=0) ^(2n−1) (−1)^(k  )   (((−1)^(p−1) (p−1)!)/((x−z_k )^p )) ⇒  f^((n)) (x)=(i/2)Σ_(k=0) ^(2n−1) (−1)^k ×(((−1)^(n−1) (n−1)!)/((x−z_k )^n )) ⇒  f^((n)) (0) =((i(−1)^(n−1) )/2)(n−1)!Σ_(k=0) ^(2n−1)  (((−1)^k )/((−z_k )^n ))   =−(i/2)(n−1)! Σ_(k=0) ^(2n−1)  (((−1)^k )/z_k ^n )  f^((n)) (1) =(i/2)Σ_(k=0) ^(2n−1) (−1)^k  (((−1)^(n−1) (n−1)!)/((1−z_k )^n ))

1)f(x)=arctan(xn)f(1)(x)=nxn11+x2nf(p)(x)=n(xn1x2n+1)(p1)withp1letdecomposeF(x)=xn1x2n+1z2n+1=0z2n=ei(2k+1)πzk=ei(2k+1)π2nandk[[0,2n1]]F(x)=xn1k=02n1(xzk)=k=02n1akxzkwehaveak=zkn12nzk2n1=12n×zkn(1)=12nzkn=12n×ei(2k+1)π2=12neikπeiπ2=12n(1)ki=i(1)k2nF(x)=i2nk=02n1(1)kxzkf(p)(x)=i2k=02n1(1)k{1xzk}(p1)=i2k=02n1(1)k(1)p1(p1)!(xzk)pf(n)(x)=i2k=02n1(1)k×(1)n1(n1)!(xzk)nf(n)(0)=i(1)n12(n1)!k=02n1(1)k(zk)n=i2(n1)!k=02n1(1)kzknf(n)(1)=i2k=02n1(1)k(1)n1(n1)!(1zk)n

Answered by mathmax by abdo last updated on 07/Dec/20

2) f(x)=Σ_(n=0) ^∞  ((f^((n)) (0))/(n!))x^n    and f^()n)) (0) is known

2)f(x)=n=0f(n)(0)n!xnandf)n)(0)isknown

Answered by mathmax by abdo last updated on 07/Dec/20

3) A_n =∫_0 ^∞  ((f(x))/x^n )dx ⇒ A_n =∫_0 ^∞  ((arctan(x^n ))/x^n )dx =∫_0 ^∞ x^(−n)  arctan(x^n )dx  by psrts A_n =[(1/(1−n))x^(1−n)  arctan(x^n )]_0 ^∞ −∫_0 ^∞  (1/(1−n))x^(1−n) ×((nx^(n−1) )/(1+x^(2n) ))dx  =(n/(n−1))∫_0 ^∞   (dx/(1+x^(2n) ))  but ∫_0 ^∞   (dx/(1+x^(2n) ))=_(x^(2n) =t→x=t^(1/(2n)) )   ∫_0 ^∞   (1/(2n))t^((1/(2n))−1)   (dt/(1+t))  =(1/(2n))∫_0 ^∞  (t^((1/(2n))−1) /(1+t))dt =(1/(2n))×(π/(sin((π/(2n))))) ⇒A_n =(n/(n−1))×(π/(2nsin((π/(2n)))))  ⇒ A_n =(π/(2(n−1)sin((π/(2n)))))   (n≥2)

3)An=0f(x)xndxAn=0arctan(xn)xndx=0xnarctan(xn)dxbypsrtsAn=[11nx1narctan(xn)]0011nx1n×nxn11+x2ndx=nn10dx1+x2nbut0dx1+x2n=x2n=tx=t12n012nt12n1dt1+t=12n0t12n11+tdt=12n×πsin(π2n)An=nn1×π2nsin(π2n)An=π2(n1)sin(π2n)(n2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com