Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 125028 by ngahcedric last updated on 07/Dec/20

Answered by Dwaipayan Shikari last updated on 07/Dec/20

∫_0 ^4 x^n (16−x^2 )^(1/2) dx                x=4t  =4∫_0 ^1 4^n t^n (16−16t^2 )^(1/2) dt  =4^(n+2) ∫_0 ^1 t^n (1−t^2 )^(1/2) dt =4^(n+(3/2)) ∫_0 ^1 u^((n/2)−(1/2)) (1−u)^(1/2)  du      t^2 =u  =4^(n+(3/2)) ((Γ((n/2)+(1/2))Γ((3/2)))/(Γ((n/2)+2))) =2^(2n+2) (√π)((Γ((n/2)+(1/2)))/(Γ((n/2)+2)))

$$\int_{\mathrm{0}} ^{\mathrm{4}} {x}^{{n}} \left(\mathrm{16}−{x}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dx}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}=\mathrm{4}{t} \\ $$$$=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{4}^{{n}} {t}^{{n}} \left(\mathrm{16}−\mathrm{16}{t}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dt} \\ $$$$=\mathrm{4}^{{n}+\mathrm{2}} \int_{\mathrm{0}} ^{\mathrm{1}} {t}^{{n}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dt}\:=\mathrm{4}^{{n}+\frac{\mathrm{3}}{\mathrm{2}}} \int_{\mathrm{0}} ^{\mathrm{1}} {u}^{\frac{{n}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}} \left(\mathrm{1}−{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:{du}\:\:\:\:\:\:{t}^{\mathrm{2}} ={u} \\ $$$$=\mathrm{4}^{{n}+\frac{\mathrm{3}}{\mathrm{2}}} \frac{\Gamma\left(\frac{{n}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma\left(\frac{{n}}{\mathrm{2}}+\mathrm{2}\right)}\:=\mathrm{2}^{\mathrm{2}{n}+\mathrm{2}} \sqrt{\pi}\frac{\Gamma\left(\frac{{n}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{{n}}{\mathrm{2}}+\mathrm{2}\right)} \\ $$

Commented by ngahcedric last updated on 07/Dec/20

don′t really understand  please read the question well again

$${don}'{t}\:{really}\:{understand} \\ $$$${please}\:{read}\:{the}\:{question}\:{well}\:{again} \\ $$

Answered by mathmax by abdo last updated on 07/Dec/20

I_n =∫_0 ^(4 ) x^n (√(16−x^2 ))dx  we do the changement x=4sint ⇒  I_n =∫_0 ^(π/2) 4^n  sin^n t(4cost)4cost dt =4^(n+2)  ∫_0 ^(π/2)  sin^n t cos^2 t dt  we hsve 2 ∫_0 ^(π/2)  sin^(2p−1) t cos^(2q−1) t dt =B(p,q)=((Γ(p).Γ(q))/(Γ(p+q)))  2p−1=n ⇒p=((n+1)/2)  and 2q−1=2 ⇒q=(3/2) ⇒  I_n =(4^(n+2) /2)B(((n+1)/2),(3/2)) =(4^(n+2) /2)×((Γ(((n+1)/2)).Γ((3/2)))/(Γ(((n+1)/2)+(3/2))))  =8.4^n  ×((Γ(((n+1)/2))×(1/2)Γ((1/2)))/(Γ(((n+4)/2)))) =4^(n+1) Γ((1/2))×((Γ(((n+1)/2)))/(Γ(((n+4)/2))))  rest to prove that  (I_n /I_(n−2) )=16×((n−1)/(n+2))  ...be continued...

$$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\mathrm{4}\:} \mathrm{x}^{\mathrm{n}} \sqrt{\mathrm{16}−\mathrm{x}^{\mathrm{2}} }\mathrm{dx}\:\:\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\mathrm{x}=\mathrm{4sint}\:\Rightarrow \\ $$$$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{4}^{\mathrm{n}} \:\mathrm{sin}^{\mathrm{n}} \mathrm{t}\left(\mathrm{4cost}\right)\mathrm{4cost}\:\mathrm{dt}\:=\mathrm{4}^{\mathrm{n}+\mathrm{2}} \:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{n}} \mathrm{t}\:\mathrm{cos}^{\mathrm{2}} \mathrm{t}\:\mathrm{dt} \\ $$$$\mathrm{we}\:\mathrm{hsve}\:\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{sin}^{\mathrm{2p}−\mathrm{1}} \mathrm{t}\:\mathrm{cos}^{\mathrm{2q}−\mathrm{1}} \mathrm{t}\:\mathrm{dt}\:=\mathrm{B}\left(\mathrm{p},\mathrm{q}\right)=\frac{\Gamma\left(\mathrm{p}\right).\Gamma\left(\mathrm{q}\right)}{\Gamma\left(\mathrm{p}+\mathrm{q}\right)} \\ $$$$\mathrm{2p}−\mathrm{1}=\mathrm{n}\:\Rightarrow\mathrm{p}=\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}\:\:\mathrm{and}\:\mathrm{2q}−\mathrm{1}=\mathrm{2}\:\Rightarrow\mathrm{q}=\frac{\mathrm{3}}{\mathrm{2}}\:\Rightarrow \\ $$$$\mathrm{I}_{\mathrm{n}} =\frac{\mathrm{4}^{\mathrm{n}+\mathrm{2}} }{\mathrm{2}}\mathrm{B}\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}},\frac{\mathrm{3}}{\mathrm{2}}\right)\:=\frac{\mathrm{4}^{\mathrm{n}+\mathrm{2}} }{\mathrm{2}}×\frac{\Gamma\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}\right).\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{2}}\right)} \\ $$$$=\mathrm{8}.\mathrm{4}^{\mathrm{n}} \:×\frac{\Gamma\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}\right)×\frac{\mathrm{1}}{\mathrm{2}}\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{n}+\mathrm{4}}{\mathrm{2}}\right)}\:=\mathrm{4}^{\mathrm{n}+\mathrm{1}} \Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)×\frac{\Gamma\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{n}+\mathrm{4}}{\mathrm{2}}\right)} \\ $$$$\mathrm{rest}\:\mathrm{to}\:\mathrm{prove}\:\mathrm{that}\:\:\frac{\mathrm{I}_{\mathrm{n}} }{\mathrm{I}_{\mathrm{n}−\mathrm{2}} }=\mathrm{16}×\frac{\mathrm{n}−\mathrm{1}}{\mathrm{n}+\mathrm{2}} \\ $$$$...\mathrm{be}\:\mathrm{continued}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com