Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 125084 by ajfour last updated on 08/Dec/20

Commented by ajfour last updated on 08/Dec/20

Find x, hence radius of circle.

$${Find}\:{x},\:{hence}\:{radius}\:{of}\:{circle}. \\ $$

Commented by ajfour last updated on 08/Dec/20

Commented by mr W last updated on 08/Dec/20

x can be any value, because the shape  formed by both rectangles is always  cyclic.

$${x}\:{can}\:{be}\:{any}\:{value},\:{because}\:{the}\:{shape} \\ $$$${formed}\:{by}\:{both}\:{rectangles}\:{is}\:{always} \\ $$$${cyclic}. \\ $$

Answered by mr W last updated on 08/Dec/20

Commented by mr W last updated on 08/Dec/20

ABCD is always cyclic.  AB=CD=(√((((x−1)/2))^2 +(1+x)^2 ))  AC=BD=(√((((x+1)/2))^2 +(1+x)^2 ))=(((x+1)(√5))/2)  R=radius  Δ_(ABD) =((1×(1+x))/2)  formula R=((abc)/(4Δ))  ⇒R=((√([(((x−1)/2))^2 +(1+x)^2 ][(((x+1)/2))^2 +(1+x)^2 ]))/(2(1+x)))  ⇒R=((√(5(5x^2 +6x+5)))/8)

$${ABCD}\:{is}\:{always}\:{cyclic}. \\ $$$${AB}={CD}=\sqrt{\left(\frac{{x}−\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\mathrm{1}+{x}\right)^{\mathrm{2}} } \\ $$$${AC}={BD}=\sqrt{\left(\frac{{x}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }=\frac{\left({x}+\mathrm{1}\right)\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${R}={radius} \\ $$$$\Delta_{{ABD}} =\frac{\mathrm{1}×\left(\mathrm{1}+{x}\right)}{\mathrm{2}} \\ $$$${formula}\:{R}=\frac{{abc}}{\mathrm{4}\Delta} \\ $$$$\Rightarrow{R}=\frac{\sqrt{\left[\left(\frac{{x}−\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\mathrm{1}+{x}\right)^{\mathrm{2}} \right]\left[\left(\frac{{x}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\mathrm{1}+{x}\right)^{\mathrm{2}} \right]}}{\mathrm{2}\left(\mathrm{1}+{x}\right)} \\ $$$$\Rightarrow{R}=\frac{\sqrt{\mathrm{5}\left(\mathrm{5}{x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{5}\right)}}{\mathrm{8}} \\ $$

Commented by ajfour last updated on 08/Dec/20

Very Nice solution, Sir!

$${Very}\:{Nice}\:{solution},\:{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com