Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 125098 by mnjuly1970 last updated on 08/Dec/20

              ...nice   calculus ...       prove  that :: Apery′s constant       φ=∫_0 ^( 1) {(4x^2 +4^2 x^2^2  +4^3 x^2^3  +...)((ln^2 (x))/(x(1+x)))}dx                                  =2ζ(3)−1

...nicecalculus...provethat::Aperysconstantϕ=01{(4x2+42x22+43x23+...)ln2(x)x(1+x)}dx=2ζ(3)1

Commented by talminator2856791 last updated on 08/Dec/20

 what is the answer

whatistheanswer

Answered by Dwaipayan Shikari last updated on 08/Dec/20

∫_0 ^1 (4x^2 +4^2 x^2^2  +4^3 x^2^3  +..)((log^2 x)/(x(1+x)))dx  =∫_0 ^1 Σ^∞ 4^n x^2^n  ((log^2 x)/(x(1+x)))dx  =Σ_(n=1) ^∞ ∫_0 ^1 ((2^(2n) x^2^n  log^2 (x))/(x(1+x)))dx  =Σ_(n≥1) ^∞ 2^(2n) (∫_0 ^1 x^(2^n −1) log^2 (x)−∫_0 ^1 ((x^2^n  log^2 (x))/(1+x))dx)  =Σ_(n≥1) ^∞ 2^(2n) (∫_(−∞) ^0 e^(2^n t) t^2 −∫_0 ^1 ((x^2^n  log^2 (x))/(1+x))dx)      Replace t as −t  =Σ_(n≥1) ^∞ 2^(2n) (∫_0 ^∞ e^(−2^n t) t^2 −∫_0 ^1 ((x^2^n  log^2 (x))/(1+x))dx)         2^n t=u⇒2^n =(du/dt)  =Σ_(n≥1) ^∞ (1/2^n )Γ(2)−Σ_(n≥1) ^∞ 2^(2n) ∫_0 ^1 ((x^2^n  log^2 (x))/(1+x))dx  =1−Σ_(n≥1) ^∞ 2^(2n) Σ_(k≥0) ^∞ (−1)^k ∫_0 ^1 x^(2^n −k) log^2 (x)dx  =1−Σ_(n≥1) ^∞ 2^(2n) Σ_(k≥0) ^∞ (−1)^k ∫_(−∞) ^0 e^(t(2^n −k+1)) t^2 dt  =1−Σ_(n≥1) ^∞ 2^(2n) Σ_(k≥0) ^∞ (−1)^k ∫_0 ^∞ e^(−t(2^n −k+1)) t^2 dt  =1−Σ_(n≥1) ^∞ 2^(2n) Σ_(k≥0) ^∞ (((−1)^k )/((2^n −k+1)^3 ))=1−Σ_(k≥0) ^∞ (−1)^k Σ_(n≥1) ^∞ (2^(2n) /((2^n −k+1)^3 ))...

01(4x2+42x22+43x23+..)log2xx(1+x)dx=014nx2nlog2xx(1+x)dx=n=10122nx2nlog2(x)x(1+x)dx=n122n(01x2n1log2(x)01x2nlog2(x)1+xdx)=n122n(0e2ntt201x2nlog2(x)1+xdx)Replacetast=n122n(0e2ntt201x2nlog2(x)1+xdx)2nt=u2n=dudt=n112nΓ(2)n122n01x2nlog2(x)1+xdx=1n122nk0(1)k01x2nklog2(x)dx=1n122nk0(1)k0et(2nk+1)t2dt=1n122nk0(1)k0et(2nk+1)t2dt=1n122nk0(1)k(2nk+1)3=1k0(1)kn122n(2nk+1)3...

Commented by talminator2856791 last updated on 08/Dec/20

 is log the same as ln?    because in the question it says ln but you say log

islogthesameasln?becauseinthequestionitsayslnbutyousaylog

Terms of Service

Privacy Policy

Contact: info@tinkutara.com